190 research outputs found

    Abundance and properties of microplastics found in commercial fish meal and cultured common carp (Cyprinus carpio)

    Get PDF
    Microplastics (MPs) are environmental contaminants that are of increasing global concern. This study investigated the presence of MPs in four varieties of marine-derived commercial fish meal, followed by identification of their polymer composition using Fourier transform infrared (FTIR) spectroscopy. Exposure experiments were conducted on cultured common carp (Cyprinus carpio) by feeding four varieties of commercially available fish meal to determine relationships between abundance and properties of MPs found both in meal and in those transferred to cultured common carp. Mean particle sizes were 452 ± 161 μm (± SD). Fragments were the predominant shape of MP found in fish meal (67%) and C. carpio gastrointestinal tract and gills (65%), and polypropylene and polystyrene were the most present plastic polymers found in fish meal (45% and 24%, respectively) and C. carpio (37% and 33%, respectively). Positive relationships were found between MP levels in fish meal and C. carpio. This study highlights that marine-derived fish meal may be a source of MPs which can be transferred to cultured fish, thus posing a concern for aquaculture

    Multi-objective optimization of the engine performance and emissions for a hydrogen/gasoline dual-fuel engine equipped with the port water injection system

    Get PDF
    Hydrogen is one of the most promising options being considered as the fuel of future. However, injection of hydrogen into modern gasoline fueled engines can cause some issues such as power loss. This study, therefore, aims to address this challenge in a simulated hydrogen/gasoline dual-fueled engine by developing a novel and innovative approach without possible side effects such as NOx increment. To achieve this goal, the impacts of water injection and the start of the combustion (SOC) modification in a gasoline/hydrogen duel fueled engine have been rigorously investigated. In current methodology, an engine is simulated using AVL software and the model is validated against the experimental data. The Latin Hypercube design experiment method was employed to determine the design points in 3-dimensional space. Due to the existing trade-off between NOx and BMEP, multi-objective optimization using genetic algorithm (GA) was implemented to determine the optimum values of water injection and SOC in various hydrogen energy shares and the effects of optimum design parameters on the main engine performance and emission parameters were investigated. The results showed that the proposed solution could recover the brake mean effective pressure (BMEP) and in some hydrogen energy shares even increase it above the level of single fueled gasoline engine with the added benefit of there being no increase in NOx compared to the original level. Furthermore, other emissions and engine performance parameters are improved including the engine equivalent Brake specific fuel consumption (BSFC) which was shown to increased up to 4.61

    Novel hybrid system of pulsed HHO generator/TEG waste heat recovery for CO reduction of a gasoline engine

    Get PDF
    Environmental crisis requires using cleaner energy sources for different sectors including the transportation. Hydrogen can support the transition of the automotive industry from petrol and diesel into a sustainable fuel. It could be the main source of energy or the auxiliary fuel in vehicles. As an auxiliary fuel, it has recently been considered in hydroxyl (HHO) form for reducing the emissions from transportation fleet. In this study, an HHO generator with the optimum power consumption was utilised for HHO injection into the intake manifold of a petrol engine as the case study. High concentration of CO is expected to be produced during idling, so the experiments were designed to inject ultra-low HHO for reducing CO emissions. The results were very promising, and it was shown that the CO emission could be reduced by about 98%. Furthermore, a novel design was developed based on the concept of waste heat recovery (WHR) for powering the HHO unit. Engine was simulated in AVL software to design a thermoelectric generators (TEG) for running the HHO unit. Based on the results, TEG can provide the energy required for HHO unit as the energy output of the TEG was between 91 kJ to 169 kJ for the case study while the energy consumption of the proposed HHO generator was just about 1 22.5 kJ. The results of this study are recommending a practical solution for bringing HHO 2 injection from laboratory research into the real practice

    Energy and exergy analysis of a novel turbo-compounding system for supercharging and mild hybridization of a gasoline engine

    Get PDF
    Number of hybrid vehicles has increased around the world significantly. Automotive industry is utilizing the hybridization of the powertrain system to achieve better fuel economic and emissions reduction. One of the options recently considered in research for hybridization and downsizing of vehicles is to employ waste heat recovery systems. In this paper, the addition of a turbo-compound system with an air Brayton cycle to a naturally-aspirated engine was studied in AVL BOOST software. In addition, a supercharger was modeled to charge extra air into the engine and Air Brayton cycle (ABC). The engine was first validated against the experimental data prior to turbo compounding. The energy and exergy analysis were performed to understand the effects of the proposed design at engine rated speed. Results showed that between 16 to 18% increase in engine mechanical power can be achieved by adding turbo-compressor. Furthermore, the recommended ABC system can recover up to 1.1 kW extra electrical power from the engine exhaust energy. The energy and exergy efficiencies were both improved slightly by turbo-compounding and BSFC reduced by nearly 1% with the proposed system. Furthermore, installing the proposed system resulted in increasing of backpressure up to approximately 23.8 kPa

    Numerical study of engine performance and emissions for port injection of ammonia into a gasoline\ethanol dual-fuel spark ignition engine

    Get PDF
    This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Family history of colorectal cancer in Iran

    Get PDF
    BACKGROUND: Previous reports show a high proportion of young CRC patients in Iran. In this study we aim to look for the clustering of colorectal cancer in families of a series of CRC patients from Iran. METHODS: The family history of cancer is traced in 449 CRC patients of which 112 were 45 yrs or younger and 337 were older than 45 yrs at time of diagnosis. The patients were admitted in two hospitals in Tehran, during a 4-year period. RESULTS: Clinical diagnosis of HNPCC was established in 21 (4.7%) probands. Family history of CRC was more frequently reported by early-onset than by late-onset patients (29.5% vs. 12.8%, p < 0.001). Distribution of tumor site differed significantly between those with and without family history of CRC. Right colon cancer was the most frequent site (23/45, 35.4%) observed in patients with positive family history of colorectal cancer. CONCLUSION: The relatively high frequency of CRC clustering along with HNPCC in our patients should be further confirmed with larger sample size population-based and genetic studies to establish a cost effective molecular screening for the future

    3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration

    Get PDF
    A bioengineered skeletal muscle tissue as an alternative for autologous tissue flaps, which mimics the structural and functional characteristics of the native tissue, is needed for reconstructive surgery. Rapid progress in the cell-based tissue engineering principle has enabled in vitro creation of cellularized muscle-like constructs; however, the current fabrication methods are still limited to build a three-dimensional (3D) muscle construct with a highly viable, organized cellular structure with the potential for a future human trial. Here, we applied 3D bioprinting strategy to fabricate an implantable, bioengineered skeletal muscle tissue composed of human primary muscle progenitor cells (hMPCs). The bioprinted skeletal muscle tissue showed a highly organized multi-layered muscle bundle made by viable, densely packed, and aligned myofiber-like structures. Our in vivo study presented that the bioprinted muscle constructs reached 82% of functional recovery in a rodent model of tibialis anterior (TA) muscle defect at 8 weeks of post-implantation. In addition, histological and immunohistological examinations indicated that the bioprinted muscle constructs were well integrated with host vascular and neural networks. We demonstrated the potential of the use of the 3D bioprinted skeletal muscle with a spatially organized structure that can reconstruct the extensive muscle defects
    corecore