764 research outputs found

    Evidence for narrow resonant structures at W1.68W \approx 1.68 and W1.72W \approx 1.72 GeV in real Compton scattering off the proton

    Get PDF
    First measurement of the beam asymmetry Σ\Sigma for Compton scattering off the proton in the energy range Eγ=0.851.25E_{\gamma}=0.85 - 1.25 GeV is presented. The data reveals two narrow structures at Eγ=1.036E_{\gamma}= 1.036 and Eγ=1.119E_{\gamma}=1.119 GeV. They may signal narrow resonances with masses near 1.681.68 and 1.721.72 GeV, or they may be generated by the sub-threshold KΛK\Lambda and ωp\omega p production. Their decisive identification requires additional theoretical and experimental efforts.Comment: Published versio

    A combined genome-wide approach identifies a new potential candidate marker associated with the coat color sidedness in cattle

    Get PDF
    Coat color is one of the most important phenotypic features in livestock breeds. Cinisara is a local cattle breed generally of uniform black color which occasionally presents a particular phenotype, with animals typically display a white band along their spine, from the head to the tail, and on the ventral line (color sidedness). Therefore, this breed provides an ideal model to study the genetic components underlying phenotypic variation in coat color. A total of 63 animals, ten with sidedness phenotype and 53 with uniform black color were genotyped with Illumina Bovine 50 K. The comparison among genome-wide association study and FST analysis revealed a single nucleotide polymorphism (SNP), ARS-BFGL-NGS-55928, significantly associated with the trait. Only one gene (PLK2)was annotated near the associated SNP in a window of ±200 kb. The protein encoded by this gene is a member of the polo-like kinases, the same family of several known coat-color candidate genes. Based on the reported results, we draw the possible conclusion that the identified marker is potentially associated with the coat color sidedness in Cinisara. The local breeds with their genetic variability represent an important resource and model to study the genetic basis affecting peculiar traits. Future studies would be particularly relevant to refine these results and to better understand the genetic basis for this phenotype

    Noise in multiple sclerosis: unwanted and necessary

    Get PDF
    As our knowledge about the etiology of multiple sclerosis (MS) increases, deterministic paradigms appear insufficient to describe the pathogenesis of the disease, and the impression is that stochastic phenomena (i.e. random events not necessarily resulting in disease in all individuals) may contribute to the development of MS. However, sources and mechanisms of stochastic behavior have not been investigated and there is no proposed framework to incorporate nondeterministic processes into disease biology. In this report, we will first describe analogies between physics of nonlinear systems and cell biology, showing how small-scale random perturbations can impact on large-scale phenomena, including cell function. We will then review growing and solid evidence showing that stochastic gene expression (or gene expression “noise”) can be a driver of phenotypic variation. Moreover, we will describe new methods that open unprecedented opportunities for the study of such phenomena in patients and the impact of this information on our understanding of MS course and therapy

    Stochastic Resonance in Two Dimensional Landau Ginzburg Equation

    Full text link
    We study the mechanism of stochastic resonance in a two dimensional Landau Ginzburg equation perturbed by a white noise. We shortly review how to renormalize the equation in order to avoid ultraviolet divergences. Next we show that the renormalization amplifies the effect of the small periodic perturbation in the system. We finally argue that stochastic resonance can be used to highlight the effect of renormalization in spatially extended system with a bistable equilibria

    Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep

    Get PDF
    Background: Because very large numbers of single nucleotide polymorphisms (SNPs) are now available throughout the genome, they are particularly suitable for the detection of genomic regions where a reduction in heterozygosity has occurred and they offer new opportunities to improve the accuracy of inbreeding (F F) estimates. Runs of homozygosity (ROH) are contiguous lengths of homozygous segments of the genome where the two haplotypes inherited from the parents are identical. Here, we investigated the occurrence and distribution of ROH using a medium-dense SNP panel to characterize autozygosity in 516 Valle del Belice sheep and to identify the genomic regions with high ROH frequencies. Results: We identified 11,629 ROH and all individuals displayed at least one ROH longer than 1 Mb. The mean value of F F estimated from ROH longer than1 Mb was 0.084 \uc2\ub1 0.061. ROH that were shorter than 10 Mb predominated. The highest and lowest coverages of Ovis aries chromosomes (OAR) by ROH were on OAR24 and OAR1, respectively. The number of ROH per chromosome length displayed a specific pattern, with higher values for the first three chromosomes. Both number of ROH and length of the genome covered by ROH varied considerably between animals. Two hundred and thirty-nine SNPs were considered as candidate markers that may be under directional selection and we identified 107 potential candidate genes. Six genomic regions located on six chromosomes, corresponding to ROH islands, are presented as hotspots of autozygosity, which frequently coincided with regions of medium recombination rate. According to the KEGG database, most of these genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. A genome scan revealed the presence of ROH islands in genomic regions that harbor candidate genes for selection in response to environmental stress and which underlie local adaptation. Conclusions: These results suggest that natural selection has, at least partially, a role in shaping the genome of Valle del Belice sheep and that ROH in the ovine genome may help to detect genomic regions involved in the determinism of traits under selection

    Force balance and membrane shedding at the Red Blood Cell surface

    Full text link
    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and quantitatively reproduces the rate of area loss in aging red-blood cells.Comment: 4 pages, 3 figure
    corecore