3,801 research outputs found
Universally Consistent Latent Position Estimation and Vertex Classification for Random Dot Product Graphs
In this work we show that, using the eigen-decomposition of the adjacency
matrix, we can consistently estimate latent positions for random dot product
graphs provided the latent positions are i.i.d. from some distribution. If
class labels are observed for a number of vertices tending to infinity, then we
show that the remaining vertices can be classified with error converging to
Bayes optimal using the -nearest-neighbors classification rule. We evaluate
the proposed methods on simulated data and a graph derived from Wikipedia
Matched filters for noisy induced subgraph detection
First author draftWe consider the problem of finding the vertex correspondence between two graphs with different number of vertices where the smaller graph is still potentially large. We propose a solution to this problem via a graph matching matched filter: padding the smaller graph in different ways and then using graph matching methods to align it to the larger network. Under a statistical model for correlated pairs of graphs, which yields a noisy copy of the small graph within the larger graph, the resulting optimization problem can be guaranteed to recover the true vertex correspondence between the networks, though there are currently no efficient algorithms for solving this problem. We consider an approach that exploits a partially known correspondence and show via varied simulations and applications to the Drosophila connectome that in practice this approach can achieve good performance.https://arxiv.org/abs/1803.02423https://arxiv.org/abs/1803.0242
Matched Filters for Noisy Induced Subgraph Detection
The problem of finding the vertex correspondence between two noisy graphs
with different number of vertices where the smaller graph is still large has
many applications in social networks, neuroscience, and computer vision. We
propose a solution to this problem via a graph matching matched filter:
centering and padding the smaller adjacency matrix and applying graph matching
methods to align it to the larger network. The centering and padding schemes
can be incorporated into any algorithm that matches using adjacency matrices.
Under a statistical model for correlated pairs of graphs, which yields a noisy
copy of the small graph within the larger graph, the resulting optimization
problem can be guaranteed to recover the true vertex correspondence between the
networks.
However, there are currently no efficient algorithms for solving this
problem. To illustrate the possibilities and challenges of such problems, we
use an algorithm that can exploit a partially known correspondence and show via
varied simulations and applications to {\it Drosophila} and human connectomes
that this approach can achieve good performance.Comment: 41 pages, 7 figure
Development of advanced digital techniques for data acquisition processing and communication Interim scientific report
Digital techniques for automatic evaluation of images and data compression algorithm
Maximum Likelihood Estimation and Graph Matching in Errorfully Observed Networks
Given a pair of graphs with the same number of vertices, the inexact graph
matching problem consists in finding a correspondence between the vertices of
these graphs that minimizes the total number of induced edge disagreements. We
study this problem from a statistical framework in which one of the graphs is
an errorfully observed copy of the other. We introduce a corrupting channel
model, and show that in this model framework, the solution to the graph
matching problem is a maximum likelihood estimator. Necessary and sufficient
conditions for consistency of this MLE are presented, as well as a relaxed
notion of consistency in which a negligible fraction of the vertices need not
be matched correctly. The results are used to study matchability in several
families of random graphs, including edge independent models, random regular
graphs and small-world networks. We also use these results to introduce
measures of matching feasibility, and experimentally validate the results on
simulated and real-world networks
A nonparametric two-sample hypothesis testing problem for random dot product graphs
We consider the problem of testing whether two finite-dimensional random dot
product graphs have generating latent positions that are independently drawn
from the same distribution, or distributions that are related via scaling or
projection. We propose a test statistic that is a kernel-based function of the
adjacency spectral embedding for each graph. We obtain a limiting distribution
for our test statistic under the null and we show that our test procedure is
consistent across a broad range of alternatives.Comment: 24 pages, 1 figure
- …