57 research outputs found

    A new protein evaluation system for horse feed from literature data

    Get PDF
    Few data on apparent pre-caecal digestibility (APCD) of crude protein (CP) and particularly amino acids (AA) are available from studies with horses. Protein bound in cell walls (i.e. neutral detergent insoluble CP (NDICP)) is unlikely to be decomposed by digestive enzymes in the small intestine. In contrast the corresponding analytical fraction of neutral detergent soluble CP (NDSCP) (NDSCP = CP-NDICP) is likely to be available for auto-enzymatic digestion. A literature analysis on the relationship between NDICP/NDSCP and pre-caecal indigestible/digestible CP was carried out. There was a strong positive relationship between NDICP and pre-caecal indigestible CP, which suggests that NDICP can be used to estimate the part of protein that is not available for digestion in the small intestine. There was also a correlation between NDSCP and pre-caecal digestible protein. The slope of the linear regression line between NDICP and pre-caecal digestible CP was 0.9, suggesting an APCD of NDSCP of 90 %. Thus pre-caecal digestible CP may be predicted by multiplying NDSCP by 0.9. Because the literature identifies a similar AA profile in NDICP and NDSCP within a given feed the presented concept may preliminarily be transferred to AA. The proposed system can at any time be adapted to the scientific progress without altering its structure. Such adaptations would be necessary particularly when new knowledge exist on the distribution of AA onto NDICP/NDSCP, the APCD of individual AA from NDSCP, and the impact of feed processing and chewing on particle sizes and protein digestibility

    Structural Features of Condensed Tannins Influence Their Antimethanogenic Potential in Forage Plants

    Get PDF
    Despite years of research on the antimethanogenic potential of condensed tannins (CT), their large-scale application is inhibited by a substantial variability in previous studies with regards to their impact on ruminant nutrition. This variability mainly results from the complexity of CT structures, and their impact on methane emissions is often unaccounted for. Hence, this study (a) evaluated the variability in antimethanogenic potential across six forage species, (b) linked methane emissions to tannin activity, and (c) determined the impact of CT structural features on methane abatement. Six forage species were grown in a greenhouse under controlled environmental conditions, namely, sainfoin (Onobrychis viciifolia), birdsfoot trefoil (Lotus corniculatus), big trefoil (Lotus pedunculatus), plantain (Plantaga lanceolata), sulla (Hedysarum coronarium) and lucerne (Medicago sativa). The plants were harvested at the flowering stage and leaf samples were analysed for chemical composition, condensed tannin concentration and structural features, before being incubated in rumen fluid for 24 hours. Lucerne was used as negative control (without tannins) and an additional polyethylene glycol (PEG) treatment was included, to inactivate tannins and link any effect on fermentation characteristics to tannin activity only. A strong variability across the species (P\u3c 0.0001) was observed on methane emissions. Sulla had the highest antimethanogenic potential and decreased methane emissions by 47% compared to lucerne. All species rich in CTs decreased both methane and total gas production, yet the PEG treatment did not alter the methane proportion in the total gas produced. In addition to CT concentration (R= -0.78), methane emissions were found to be negatively correlated with the CT structural features, prodelphinidin percentage (R= -0.6) and mean degree of polymerisation (R= -0.57). This study demonstrated that antimethanogenic potential of forages depends on CT concentration as well as on structural features and incorporating them in the studies can efficiently assess their impact on ruminant nutrition

    Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric CH\u3csub\u3e4\u3c/sub\u3e Emissions

    Get PDF
    Enteric methane (CH4) is a main source of agriculture-related greenhouse gasses. Conversely, pasture is increasingly demanded by customers due to both perceived and real benefits regarding animal welfare, environmental aspects and product quality. However, if implemented poorly, CH4 emissions can increase, thus contributing to climate change. One promising option to reduce enteric CH4 emissions are plant specialized metabolites (PSM), and particularly tannins. Consequently, we conducted two complementary experiments to determine to what extent enteric CH4 emissions can be reduced, and how this affects milk yields: a) an in vivo experiment with grazing Jersey cows, where CH4 emissions were quantified using the SF6 tracer technique, and b) an in vitro experiment using the Hohenheim gas test. In the in vivo experiment, a binary mixture consisting of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) was compared against a diverse mixture consisting of eight species, including birdsfoot trefoil (Lotus corniculatus), and salad burnet (Sanguisorba minor). In the in vitro experiment, the eight species from the in vivo experiment were combined in binary mixtures with perennial ryegrass in increasing proportions, to determine the mitigation potential of each species. Results show an increase in milk yield for the diverse mixture, although this is also accompanied by higher CH4 emissions. Nevertheless, these emissions are lower across both mixtures, when compared with similar trials. This is probably due to a very high digestibility of the ingested forage. With the in vitro experiment, we were able to confirm a substantial potential for CH4 reduction when including species rich in PSM. However, those forbs with the higher anti-methanogenic potential were only present in minor proportions in the pasture. Hence, further research will be required on how to increase the share of the bioactive species with lower competitiveness and confirm their potential in vivo
    • …
    corecore