195 research outputs found

    Editorial: new advanced wireless technologies for objective monitoring of motor symptoms in Parkinson's disease

    Get PDF
    Nowadays, a growing number of researchers is using advanced wearable technologies with inertial measurement units (IMUs) to improve the evaluation of motor symptoms in patients with Parkinson’s Disease (PD). In this contest, wearable sensors are promising technologies possibly helpful for the overall clinical management of PD. The present Research Topic entitled “New Advanced Wireless Technologies for Objective Monitoring of Motor Symptoms in Parkinson's Disease” explores advances and perspectives of new wearable devices applied to patients with PD in order to support the clinical assessment with objective methods. The eleven manuscripts included in this Research Topic deal with the evaluation of a wide range of motor symptoms in patients with PD, including the classical cardinal signs such as bradykinesia, rigidity, tremor, postural instability and disabling gait disorders such as Freezing of Gait (FOG). FOG significantly increases the risk of falls in patients with PD, resulting in a negative impact on quality of life

    New advanced wireless technologies for objective monitoring of motor symptoms in parkinson's disease

    Get PDF
    Edition of a Research topic of Frontiers in Neurology with 12 reviewed and accepted original papersPeer ReviewedPostprint (published version

    Variability in non-invasive brain stimulation studies: reasons and results

    Get PDF
    Non-invasive brain stimulation techniques (NIBS), such as Theta Burst Stimulation (TBS), Paired Associative Stimulation (PAS) and transcranial Direct Current Stimulation (tDCS), are widely used to probe plasticity in the human motor cortex (M1). Although TBS, PAS and tDCS differ in terms of physiological mechanisms responsible for experimentally-induced cortical plasticity, they all share the ability to elicit long-term potentiation (LTP) and depression (LTD) in M1. However, NIBS techniques are all affected by relevant variability in intra- and inter-subject responses. A growing number of factors contributing to NIBS variability have been recently identified and reported. In this review, we have readdressed the issue of variability in human NIBS studies. We have first briefly discussed the physiological mechanisms responsible for TBS, PAS and tDCS-induced cortical plasticity. Then, we have provided statistical measures of intra- and inter-subject variability, as calculated in previous studies. Finally, we have reported in detail known sources of variability by categorizing them into physiological, technical and statistical factors. Improving knowledge about sources of variability could lead to relevant advances in designing new tailored NIBS protocols in physiological and pathological conditions

    Wearable sensors system for an improved analysis of freezing of gait in Parkinson's disease using electromyography and inertial signals

    Get PDF
    We propose a wearable sensor system for automatic, continuous and ubiquitous analysis of Freezing of Gait (FOG), in patients affected by Parkinson's disease. FOG is an unpredictable gait disorder with different clinical manifestations, as the trembling and the shuffling-like phenotypes, whose underlying pathophysiology is not fully understood yet. Typical trembling-like subtype features are lack of postural adaptation and abrupt trunk inclination, which in general can increase the fall probability. The targets of this work are detecting the FOG episodes, distinguishing the phenotype and analyzing the muscle activity during and outside FOG, toward a deeper insight in the disorder pathophysiology and the assessment of the fall risk associated to the FOG subtype. To this aim, gyroscopes and surface electromyography integrated in wearable devices sense simultaneously movements and action potentials of antagonist leg muscles. Dedicated algorithms allow the timely detection of the FOG episode and, for the first time, the automatic distinction of the FOG phenotypes, which can enable associating a fall risk to the subtype. Thanks to the possibility of detecting muscles contractions and stretching exactly during FOG, a deeper insight into the pathophysiological underpinnings of the different phenotypes can be achieved, which is an innovative approach with respect to the state of art

    Neuropsychiatric disturbances in atypical Parkinsonian disorders

    Get PDF
    Multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are the most common atypical parkinsonisms. These disorders are characterized by varying combinations of autonomic, cerebellar and pyramidal system, and cognitive dysfunctions. In this paper, we reviewed the evidence available on the presence and type of neuropsychiatric disturbances in MSA, PSP, and CBD. A MedLine, Excerpta Medica, PsycLit, PsycInfo, and Index Medicus search was performed to identify all articles published on this topic between 1965 and 2018. Neuropsychiatric disturbances including depression, anxiety, agitation, and behavioral abnormalities have been frequently described in these disorders, with depression as the most frequent disturbance. MSA patients show a higher frequency of depressive disorders when compared to healthy controls. An increased frequency of anxiety disorders has also been reported in some patients, and no studies have investigated apathy. PSP patients may have depression, apathy, disinhibition, and to a lesser extent, anxiety and agitation. In CBD, neuropsychiatric disorders are similar to those present in PSP. Hallucinations and delusions are rarely reported in these disorders. Neuropsychiatric symptoms in MSA, PSP, and CBD do not appear to be related to the severity of motor dysfunction and are one of the main factors that determine a low quality of life. The results suggest that neuropsychiatric disturbances should always be assessed in patients with atypical parkinsonisms

    Does the somatosensory temporal discrimination threshold change over time in focal dystonia?

    Get PDF
    BACKGROUND: The somatosensory temporal discrimination threshold (STDT) is defined as the shortest interval at which an individual recognizes two stimuli as asynchronous. Some evidence suggests that STDT depends on cortical inhibitory interneurons in the basal ganglia and in primary somatosensory cortex. Several studies have reported that the STDT in patients with dystonia is abnormal. No longitudinal studies have yet investigated whether STDT values in different forms of focal dystonia change during the course of the disease. METHODS: We designed a follow-up study on 25 patients with dystonia (15 with blepharospasm and 10 with cervical dystonia) who were tested twice: upon enrolment and 8 years later. STDT values from dystonic patients at the baseline were also compared with those from a group of 30 age-matched healthy subjects. RESULTS: Our findings show that the abnormally high STDT values observed in patients with focal dystonia remained unchanged at the 8-year follow-up assessment whereas disease severity worsened. CONCLUSIONS: Our observation that STDT abnormalities in dystonia remain unmodified during the course of the disease suggests that the altered activity of inhibitory interneurons-either at cortical or at subcortical level-responsible for the increased STDT does not deteriorate as the disease progresses

    Stand-alone wearable system for ubiquitous real-time monitoring of muscle activation potentials

    Get PDF
    Wearable technology is attracting most attention in healthcare for the acquisition of physiological signals. We propose a stand-alone wearable surface ElectroMyoGraphy (sEMG) system for monitoring the muscle activity in real time. With respect to other wearable sEMG devices, the proposed system includes circuits for detecting the muscle activation potentials and it embeds the complete real-time data processing, without using any external device. The system is optimized with respect to power consumption, with a measured battery life that allows for monitoring the activity during the day. Thanks to its compactness and energy autonomy, it can be used outdoor and it provides a pathway to valuable diagnostic data sets for patients during their own day-life. Our system has performances that are comparable to state-of-art wired equipment in the detection of muscle contractions with the advantage of being wearable, compact, and ubiquitous

    Voluntary movement takes shape. the link between movement focusing and sensory input gating

    Get PDF
    The aim of the study was to investigate the relationship between motor surround inhibition (mSI) and the modulation of somatosensory temporal discrimination threshold (STDT) induced by voluntary movement. Seventeen healthy volunteers participated in the study. To assess mSI, we delivered transcranial magnetic stimulation (TMS) single pulses to record motor evoked potentials (MEPs) from the right abductor digiti minimi (ADM; “surround muscle”) during brief right little finger flexion. mSI was expressed as the ratio of ADM MEP amplitude during movement to MEP amplitude at rest. We preliminarily measured STDT values by assessing the shortest interval at which subjects were able to recognize a pair of electric stimuli, delivered over the volar surface of the right little finger, as separate in time. We then evaluated the STDT by using the same motor task used for mSI. mSI and STDT modulation were evaluated at the same time points during movement. mSI and STDT modulation displayed similar time-dependent changes during index finger movement. In both cases, the modulation was maximally present at the onset of the movement and gradually vanished over about 200 ms. Our study provides the first neurophysiological evidence about the relationship between mSI and tactile-motor integration during movement execution
    • …
    corecore