14 research outputs found

    A century of trends in adult human height

    No full text
    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries

    MN1 affects expression of genes involved in hematopoiesis and can enhance as well as inhibit RAR/RXR-induced gene expression

    No full text
    The oncoprotein meningioma 1 (MN1) is overexpressed in several subtypes of acute myeloid leukemia (AML) and overexpression was associated with a poor response to chemotherapy. MN1 is a cofactor of retinoic acid receptor/retinoic x receptor (RAR/RXR)-mediated transcription and this study identified genes in the promonocytic cell line U937 that were regulated by MN1. We found that MN1 can both stimulate and inhibit transcription. Combining MN1 expression with all-trans retinoic acid (ATRA), the ligand of the RAR/RXR dimer, showed that MN1 could both enhance and repress ATRA effects. Many of the identified genes are key players in hematopoiesis and leukemogenesis (e.g. MEIS1 and BMI1). Another interesting target is DHRS9. DHRS9 is involved in the synthesis of ATRA from vitamin A. MN1 inhibited DHRS9 expression and completely abolishe
    corecore