4 research outputs found

    Microsystem and electrochemistry

    No full text
    本文简要介绍微系统的涵义、发展和主要特点。通过列举并讨论电化学在微系统中的应用以及微系统在电化学中的可能应用 ,阐明作为纳米科技一个重要组成部分的微系统的兴起将在二十一世纪为电化学提供新的发展机遇。Microsystem or micro electromechanical system (MEMS) is briefly introduced. The electrochemical applications in microsystem are reviewed and prospective applications of microsystem in electrochemistry are discussed. Along with the rapid development of micro_ analytical chemical systems or lab_on_chips in 21st century, electrochemistry may play an increasingly important role in microsystem technology.作者联系地址:厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门361005,厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门361005Author's Address: State Key Lab for Phys. Chem. of Solid Surfaces, Dept. of Chem. and Inst. of Phys. Chem. Xiamen Univ., Xiamen 361005, Chin

    The Electrochemical Etching of Metals

    No full text
    本文概述了现行的金属微区刻蚀方法并详细地介绍几种电化学刻蚀方法 ,比较了掩膜法、扫描电化学显微镜法、约束刻蚀剂层法、电化学扫描遂道显微镜法和超短电位脉冲法各自的特点 .从加工精度 (能否进行微米和纳米级加工 )、加工效率 (工序复杂程度 ,能否批量制造或复制 )、可用范围 (主要是能否加工复杂三维立体结构 )等各项因素进行了综合分析 ,结果表明 ,各种加工方法各有其优缺点 ,从总的效果来看 ,约束刻蚀剂层技术在微加工方面具有较大优势All kinds of current methods for etching metals are reviewed.The electrochemical etching methods among them,including through_mask,scanning electrochemical microscopy,confined etchant layer technique,electrochemical scanning tunneling microscopy and super_short potential pulse,are discussed in detail.The compositive analyses were made for the methods in terms of the processing precision(whether processing in micrometer or nanometer scale),the processing efficiency(the complexity of the procedure,and whether fabricating in batch),the extent of application(mainly refer to the procedure,and whether fabricating in batch),the extent of results was shown that each method has itself advantage and imperfection. The confined etchant layer technique has superiority over other methods in the view of the total effect.作者联系地址:厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学Author's Address: State Key Lab. for Phys. Chem. of Solid Surfaces and Chem. Dept., Xiamen Univ., Xiamen 361005, Chin

    Three-dimensional Microfabrication on GaAs Using a Regular Patterns Mold

    No full text
    以微齿轮图形结构作为规整模板 ,用约束刻蚀剂层技术对GaAs样品表面进行了加工刻蚀 .在有捕捉剂H3AsO3存在的情况下 ,规则微齿轮图形能够很好地在样品表面复制 .刻蚀结果与没有捕捉剂存在时的刻蚀结果做了比较 .另外还测试了不同方法制得膜板的性能 ,初步探讨了电化学模板的制作工艺 .Electrochemical etching of single crystal GaAs (111) was performed with a regular mold which resembles the micro_gear patterns. The etched patterns on GaAs was very consistent with the negative copies of the mold when the confined etchant layer technique (CELT) was used. However when the scavenger chemical of H 3AsO 3 was not added in the etching solution, the regular micro_gear patterns of the mold could not be obtained. In addition ,the procedure of fabricating a electrochemical mold is introduced and the characteristics of the mold are briefly discussed.作者联系地址:厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门361005,厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门361005,清华大学精密仪器系!北京100084,厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门3610Author's Address: 1 State Key Lab for Phys.Chem.of the Solid Surf., Dept.of Chem., Xiamen Uni

    The Development of Microsystems and New Applications of Electrochemistry

    No full text
    本文根据田昭武在中国化学会第一届全国纳米技术与应用会议 (2 0 0 0 .11.2 8,厦门 )特邀大会报告内容整理而成 :1 微系统技术概述 (技术的必要性和前景 )2 发展微系统技术的特殊困难3 电化学在微系统技术中的应用  3.1 用于复杂 3D 图形微加工的约束刻蚀剂层技术 (CELT)  3.2 聚焦电泳和微系统在 (生物 )化学中的应用 (μ TAS或芯片上实验室 )  3.3 芯片实验室中微流体输运网络的合理选择之一 -灵巧 (Smart)电渗泵4 结论Brief introduction to microsystems 2 Discussions on the developments of microsystem technologies 3 Applications of electrochemistry in microsystem 3.1 Confined Etchant Layer Technique (CELT) for the complex 3D-pattern micromachining 3.2 Focusing Electrophoresis and the application of microsystem in (bio) chemistry (μTAS or Lab on A Chip) 3.3 Smart Electro-Osmosis pump——a reasonable choosing for microfluidic network 4 Concluding remark作者联系地址:厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!福建厦门361005,厦门大学固体表面物理化学国家重点实验室!Author's Address: State Key Lab. for Phys. Chem. of Solid Surface, Dept. Chem. Xiamen Univ.,
    corecore