32,848 research outputs found

    Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes

    Full text link
    In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system is closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.Comment: Accepted by IEEE Transactions on Power System

    Age Progression and Regression with Spatial Attention Modules

    Full text link
    Age progression and regression refers to aesthetically render-ing a given face image to present effects of face aging and rejuvenation, respectively. Although numerous studies have been conducted in this topic, there are two major problems: 1) multiple models are usually trained to simulate different age mappings, and 2) the photo-realism of generated face images is heavily influenced by the variation of training images in terms of pose, illumination, and background. To address these issues, in this paper, we propose a framework based on conditional Generative Adversarial Networks (cGANs) to achieve age progression and regression simultaneously. Particularly, since face aging and rejuvenation are largely different in terms of image translation patterns, we model these two processes using two separate generators, each dedicated to one age changing process. In addition, we exploit spatial attention mechanisms to limit image modifications to regions closely related to age changes, so that images with high visual fidelity could be synthesized for in-the-wild cases. Experiments on multiple datasets demonstrate the ability of our model in synthesizing lifelike face images at desired ages with personalized features well preserved, and keeping age-irrelevant regions unchanged

    Optimal PMU Placement for Power System Dynamic State Estimation by Using Empirical Observability Gramian

    Get PDF
    In this paper the empirical observability Gramian calculated around the operating region of a power system is used to quantify the degree of observability of the system states under specific phasor measurement unit (PMU) placement. An optimal PMU placement method for power system dynamic state estimation is further formulated as an optimization problem which maximizes the determinant of the empirical observability Gramian and is efficiently solved by the NOMAD solver, which implements the Mesh Adaptive Direct Search (MADS) algorithm. The implementation, validation, and also the robustness to load fluctuations and contingencies of the proposed method are carefully discussed. The proposed method is tested on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system by performing dynamic state estimation with square-root unscented Kalman filter. The simulation results show that the determined optimal PMU placements by the proposed method can guarantee good observability of the system states, which further leads to smaller estimation errors and larger number of convergent states for dynamic state estimation compared with random PMU placements. Under optimal PMU placements an obvious observability transition can be observed. The proposed method is also validated to be very robust to both load fluctuations and contingencies.Comment: Accepted by IEEE Transactions on Power System

    Productivity, Preferences and UIP deviations in an Open Economy Business Cycle Model

    Get PDF
    We show that a flex-price two-sector open economy DSGE model can explain the poor degree of international risk sharing and exchange rate disconnect. We use a suite of model evaluation measures and examine the role of (i) traded and non-traded sectors; (ii) financial market incompleteness; (iii) preference shocks; (iv) deviations from UIP condition for the exchange rates; and (v) creditor status in net foreign assets. We find that there is a good case for both traded and non-traded productivity shocks as well as UIP deviations in explaining the puzzles
    corecore