127 research outputs found

    An SU(N) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling

    Get PDF
    The Hubbard model, containing only the minimum ingredients of nearest neighbor hopping and on-site interaction for correlated electrons, has succeeded in accounting for diverse phenomena observed in solid-state materials. One of the interesting extensions is to enlarge its spin symmetry to SU(N>2), which is closely related to systems with orbital degeneracy. Here we report a successful formation of the SU(6) symmetric Mott insulator state with an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical lattice. Besides the suppression of compressibility and the existence of charge excitation gap which characterize a Mott insulating phase, we reveal an important difference between the cases of SU(6) and SU(2) in the achievable temperature as the consequence of different entropy carried by an isolated spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful for investigating exotic quantum phases of SU(N) Hubbard system at extremely low temperatures.Comment: 20 pages, 6 figures, to appear in Nature Physic

    Interaction and filling induced quantum phases of dual Mott insulators of bosons and fermions

    Full text link
    Many-body effects are at the very heart of diverse phenomena found in condensed-matter physics. One striking example is the Mott insulator phase where conductivity is suppressed as a result of a strong repulsive interaction. Advances in cold atom physics have led to the realization of the Mott insulating phases of atoms in an optical lattice, mimicking the corresponding condensed matter systems. Here, we explore an exotic strongly-correlated system of Interacting Dual Mott Insulators of bosons and fermions. We reveal that an inter-species interaction between bosons and fermions drastically modifies each Mott insulator, causing effects that include melting, generation of composite particles, an anti-correlated phase, and complete phase-separation. Comparisons between the experimental results and numerical simulations indicate intrinsic adiabatic heating and cooling for the attractively and repulsively interacting dual Mott Insulators, respectively

    REVISI UNDANG-UNDANG NO 33 TAHUN 2004 TENTANG PERIMBANGAN KEUANGAN ANTARA PEMERINTAH PUSAT DAN PEMERINTAHAN DAERAH SEBAGAI WUJUD IMPLEMENTASI PERIMBANGAN KEUANGAN YANG ADIL DAN SELARAS

    Get PDF
    Abstrak Undang-Undang Nomor 33 Tahun 2004 tentang Perimbangan Keuangan Antara Pemerintah Pusat dan Pemerintahan Daerah, diwujudkan dalam rangka mendukung penyelenggaraan otonomi daerah, melalui penyediaan sumber-sumber pendanaan berdasarkan kewenangan pemerintah pusat, desentralisasi, dan tugas pembantuan yang diatur melalui perimbangan keuangan antara pemerintah pusat dan pemerintah daerah. Saat ini implementasi/tujuan Negara terhadap Undang-Undang Nomor 33 Tahun 2004 tentang Perimbangan Keuangan Antara Pemerintah Pusat dan Pemerintahan Daerah dirasakan belum sesuai dengan prinsip-prinsip keadilan dan keselarasan berdasarkan Undang-Undang. Dalam rangka revisi atas undang-undang tersebut diusulkan memasukan sektor pariwisata sebagai potensi sumber dayaq lainnya, untuk selanjutnya dimasukkan dalam pasal-pasal yang akan direvisi. Kata kunci : Otonomi Daerah, Sektor Pariwisata, Perimbangan Keuangan Daera

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles
    corecore