14 research outputs found

    Use of manganese oxides recovered from spent batteries in electrocatalysis of oxygen reduction reaction in alkaline medium

    Get PDF
    The oxygen reduction reaction was studied in alkaline media using manganese oxides obtained from spent batteries as electrocatalysts. Three processes were used to recover manganese oxides from spent batteries. The particles obtained were in the range from 8 to 11 nm. The electrochemical experiments indicated a good electrocatalytic activity toward oxygen reduction using the different samples and showing approximately a direct transference of 4 electrons during the process. Even though all the processes were efficient, the best result was observed for the prepared sample using reactants of low cost.FAPESPCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)UFAB

    The water decomposition reactions on boron-doped diamond electrodes

    No full text
    The electrochemical processes occurring at both edges of the wide electrochemical window of the boron doped diamond (BDD) electrode were studied by polarization curves experiments to evaluate the apparent energy of activation for the rate determining step in each reaction. It was found that the hydrogen evolution reaction occurs by a Volmer-Heyrovsky mechanism with the first step being the RDS. Moreover, the apparent energy of activation calculated from the Tafel plots presented a value as high as 150 kJ mol-1, indicating the formation of the M-H intermediate that is characteristic for the Volmer step. On the other hand, the apparent energy of activation for the oxygen evolution reaction was found to be 106 kJ mol-1 suggesting that the RDS in this mechanism is the initial adsorption step. In this way, it was demonstrated that the interaction between water molecules and the electrode surface is strongly inhibited on BDD thus justifying the extended potential window observed for this material

    Carbon supported electrocatalysts prepared by the sol-gel method and their utilization for the oxidation of methanol in acid media

    No full text
    One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP[01/14320-0]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP[06/50692-2]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP[07/05155-1]CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CAPESCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Methanol and ethanol electro-oxidation on Pt-SnO(2) and Pt-Ta(2)O(5) sol-gel-modified boron-doped diamond surfaces

    No full text
    The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.CAPESCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP[06/50692-2]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    DFT and electrochemical studies on nortriptyline oxidation sites

    No full text
    A study on the possible sites of oxidation and epoxidation of nortriptyline was performed using electrochemical and quantum chemical methods; these sites are involved in the biological responses (for example, hepatotoxicity) of nortriptyline and other similar antidepressants. Quantum chemical studies and electrochemical experiments demonstrated that the oxidation and epoxidation sites are located on the apolar region of nortriptyline, which will useful for understanding the molecule`s activity. Also, for the determination of the compound in biological fluids or in pharmaceutical formulations, we propose a useful analytical methodology using a graphite-polyurethane composite electrode, which exhibited the best performance when compared with boron-doped diamond or glassy carbon surfaces.CNPq (The National Council for Scientific and Technological Development)FAPESP (The State of Sao Paulo Research Foundation)[01/14629-0]FAPESP (The State of Sao Paulo Research Foundation)[01/06029-3]FAPESP (The State of Sao Paulo Research Foundation)[05/59992-6]FAPESP (The State of Sao Paulo Research Foundation)[07/05370-0]FAPESP (The State of Sao Paulo Research Foundation)[07/05155-1

    METODOLOGIA PARA DETECÇÃO ELETROQUÍMICA QUALITATIVA DE COMPOSTOS ORGÂNICOS EM INTERFACES PETRÓLEO/ÁGUA

    No full text
    The possibility of detecting some organic compounds directly in a petroleum/water interface was described. Aqueous phase was composed by 1 x 10-3 mol L-1 NaCl solution and the oil phase was carried out using crude oil forming an oil/water interface. Carbon based screen-printed electrodes was used in conjunction with square-wave voltammetry technique, constituting the main tools of this technical note. Petroleum was contaminated with phenol, naphthalene and cyclohexane. The oxidation potentials for these three molecules were 0,72, 0,81 and 0,87 V vs. Ag, respectively. Phenol was chosen to study the stability of currents during the process. After 15 minutes, the currents of this process were stable. Although the formation of a passivation film, the qualitative detection of the molecules was possible. Finally, the main advantage of this methodology is the possibility of detecting contaminants in oil without the necessity of complicated pre-treatment steps

    The influence of different co-catalysts in Pt-based ternary and quaternary electro-catalysts on the electro-oxidation of methanol and ethanol in acid media

    No full text
    One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.National Council of Technological and Scientific Development-CNPq from Brazil [304018/2009-0, 141421/2004-5]National Council of Technological and Scientific DevelopmentCNPq from Brazi

    AFM studies and electrochemical characterization of boron-doped diamond surfaces modified with metal oxides by the Sol-Gel method

    No full text
    Continuing previous investigations, direct surface modifications of boron-doped diamond (BDD) electrodes with metal oxides (PtOx, RuO2, IrO2 and PbO2) and with some mixed composites were carried out by the Sol-Gel technique. The materials were studied by atomic force microscopy (AFM) to determine their surface topologies and by electrochemical techniques to establish the catalytic activity towards the oxygen evolution reaction (OER) and also, for the PtOx and PtOx-RuO2 composites, the ethanol oxidation reactions in acid media. The stability of PtOx coating covered by a Nafion® film was also tested by long-term operation. The AFM results indicated sites of heterogeneous deposition and the electrochemical studies demonstrated that the active surface area changed considerably with the proposed method of modification. The IrO2/BDD electrode showed the best performance to the OER with the onset of the oxidation current at ~1.4 V, a value 200 mV lower than for the PtOx/BDD electrode. The enhanced stability of PtOx/BDD electrodes achieved by the application of a Nafion® film and already reported in acid media was further proved using the ethanol oxidation reaction. Only a small loss of activity (6%) was observed after 4-hours electrolysis while one-thousand voltammetric cycles left the surface practically unchanged. In addition, preliminary studies for the same reaction on PtOx/BDD and PtOx-RuO2/BDD electrodes demonstrated the excellent activity of these mixed Sol-Gel coatings on the BDD surface and the possibility of further investigations for practical applications
    corecore