14 research outputs found

    The peroxisome: still a mysterious organelle

    Get PDF
    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed

    Faster Isogeny-Based Compressed Key Agreement

    No full text
    Supersingular isogeny-based cryptography is one of the more recent families of post-quantum proposals. An interesting feature is the comparatively low bandwidth occupation in key agreement protocols, which stems from the possibility of key compression. However, compression and decompression introduce a significant overhead to the overall processing cost despite recent progress. In this paper we address the main processing bottlenecks involved in key compression and decompression, and suggest substantial improvements for each of them. Some of our techniques may have an independent interest for other, more conventional areas of elliptic curve cryptography as well

    Changing climate and glacio-hydrology in Indian Himalayan Region : a review

    No full text
    This study presents a comprehensive review of the published literature on the evidences of a changing climate in the Indian Himalayan Region (IHR) and its impacts on the glacio-hydrology of the region. The IHR serves as an important source of fresh water for the densely populated areas downstream. It is evident from the available studies that temperature is significantly increasing in all parts of the IHR, whereas precipitation is not indicative of any particular spatiotemporal trend. Glacio-hydrological proxies for changing climate, such as, terminus and areal changes of the glaciers, glacier mass balance, and streamflow in downstream areas, highlight changes more evidently in recent decades. On an average, studies have predicted an increase in temperature and precipitation in the region, along with increase in streamflow of major rivers. Such trends are already apparent in some sub-basins of the western IHR. The region is particularly vulnerable to changing climate as it is highly dependent on snow and glacier melt run-off to meet its freshwater demands. We present a systematic review of key papers dealing with changing temperature, precipitation, glaciers, and streamflow in the IHR. We discuss these interdisciplinary themes in relation to each other, in order to establish the present and future impacts of climatic, glaciological, and hydrological changes in the region.Validerad; 2016; Nivå 2; 20160316 (andbra)</p

    Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport

    No full text
    Bicaudal D is an evolutionarily conserved protein, which is involved in dynein-mediated motility both in Drosophila and in mammals. Here we report that the N–terminal portion of human Bicaudal D2 (BICD2) is capable of inducing microtubule minus end-directed movement independently of the molecular context. This characteristic offers a new tool to exploit the relocalization of different cellular components by using appropriate targeting motifs. Here, we use the BICD2 N–terminal domain as a chimera with mitochondria and peroxisome-anchoring sequences to demonstrate the rapid dynein-mediated transport of selected organelles. Surprisingly, unlike other cytoplasmic dynein-mediated processes, this transport shows very low sensitivity to overexpression of the dynactin subunit dynamitin. The dynein-recruiting activity of the BICD2 N–terminal domain is reduced within the full-length molecule, indicating that the C–terminal part of the protein might regulate the interaction between BICD2 and the motor complex. Our findings provide a novel model system for dissection of the molecular mechanism of dynein motility
    corecore