175 research outputs found

    Potential Advantages of Conducting Short Duration Visits to the Martian Surface

    Get PDF
    Recent NASA concepts for human missions to Mars, including the Evolvable Mars Campaign and Design Reference Architecture 5.0, have focused on the conduct of missions with long duration stays on the Martian surface. The decision to focus on long duration missions (typically to a single site) is driven by a desire to increase the perceived sustainability of the human Mars campaign, predicated on the assumption that sustainability is best achieved by maximizing the level of activity on the surface, providing for continuous growth in operations, and promoting pioneering of Mars. However, executing a series of long duration missions to a single site is not the only option for human exploration of Mars that has been proposed. Other architectures have been evaluated that focus on missions with short duration surface stays, with each mission visiting a separate site on the surface. This type of architecture is less efficient in that elements are not typically reused from one mission to the next but requires a far less complex surface architecture. There are potentially valid arguments to be made that a short duration, multiple site approach could result in different types of advantages when compared to the long duration, single site approach to Mars exploration, particularly for initial human missions to Mars. These arguments revolve around four areas: Achieved Value, Risk Mitigation, Developmental Affordability, and Operational Affordability & Flexibility. The question of Achieved Value relates to the prioritization of goals for Martian exploration. As discussed, goals related to pioneering and expanding human presence are often referenced as justifications for the long duration approach. However, there are other competing goals, including science and exploration. While there is not a clear consensus among planetary scientists, many have argued that the value of being able to visit multiple sites could outweigh the value of continually visiting a single site. Risk Mitigation is a major concern for initial human missions to Mars. There are a number of hazards related to operating on the Martian surface that are not well characterized. It may be desirable to conduct a series of short duration missions to better understand the nature of these risks prior to committing to a long duration mission. Developmental Affordability relates to the ability of NASA and its partners to develop and deploy the proposed architecture. Any human missions to Mars will be among the most complex endeavors ever undertaken. The capabilities that must be developed to enable any human Mars missions are extremely challenging. The total design, development, test, and evaluation (DDT&E) budget required to develop just the essential capabilities alone will be substantial. If additional surface capabilities are required to support long duration surface stays, the development effort could be unaffordable. Operational Affordability & Flexibility relates to the continued costs to execute the Mars campaign. Long duration missions, even with some amount of in-situ resource utilization, require a significant level of resupply for every mission. This requires additional launches and in-space transportation assets, increasing the operational complexity and total operational cost. This paper will explore each of the four potential advantages of short duration missions in detail. The authors will present comparisons between proposed long duration and short duration architectures through an evaluation of relevant performance, cost, and risk metrics

    Launch and Assembly Reliability Analysis for Mars Human Space Exploration Missions

    Get PDF
    NASA s long-range goal is focused upon human exploration of Mars. Missions to Mars will require campaigns of multiple launches to assemble Mars Transfer Vehicles in Earth orbit. Launch campaigns are subject to delays, launch vehicles can fail to place their payloads into the required orbit, and spacecraft may fail during the assembly process or while loitering prior to the Trans-Mars Injection (TMI) burn. Additionally, missions to Mars have constrained departure windows lasting approximately sixty days that repeat approximately every two years. Ensuring high reliability of launching and assembling all required elements in time to support the TMI window will be a key enabler to mission success. This paper describes an integrated methodology for analyzing and improving the reliability of the launch and assembly campaign phase. A discrete event simulation involves several pertinent risk factors including, but not limited to: manufacturing completion; transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to TMI. The model accommodates varying numbers of launches, including the potential for spare launches. Having a spare launch capability provides significant improvement to mission success

    Supportability for Beyond Low Earth Orbit Missions

    Get PDF
    Exploration beyond Low Earth Orbit (LEO) presents many unique challenges that will require changes from current Supportability approaches. Currently, the International Space Station (ISS) is supported and maintained through a series of preplanned resupply flights, on which spare parts, including some large, heavy Orbital Replacement Units (ORUs), are delivered to the ISS. The Space Shuttle system provided for a robust capability to return failed components to Earth for detailed examination and potential repair. Additionally, as components fail and spares are not already on-orbit, there is flexibility in the transportation system to deliver those required replacement parts to ISS on a near term basis. A similar concept of operation will not be feasible for beyond LEO exploration. The mass and volume constraints of the transportation system and long envisioned mission durations could make it difficult to manifest necessary spares. The supply of on-demand spare parts for missions beyond LEO will be very limited or even non-existent. In addition, the remote nature of the mission, the design of the spacecraft, and the limitations on crew capabilities will all make it more difficult to maintain the spacecraft. Alternate concepts of operation must be explored in which required spare parts, materials, and tools are made available to make repairs; the locations of the failures are accessible; and the information needed to conduct repairs is available to the crew. In this paper, ISS heritage information is presented along with a summary of the challenges of beyond LEO missions. A number of Supportability issues are discussed in relation to human exploration beyond LEO. In addition, the impacts of various Supportability strategies will be discussed. Any measure that can be incorporated to reduce risk and improve mission success should be evaluated to understand the advantages and disadvantages of implementing those measures. Finally, an effort to model and evaluate Supportability for beyond LEO missions will be described

    Empirically Constrained Color-Temperature Relations. II. uvby

    Full text link
    (Abriged) A new grid of theoretical color indices for the Stromgren uvby photometric system has been derived from MARCS model atmospheres and SSG synthetic spectra for cool dwarf and giant stars. At warmer temperatures this grid has been supplemented with the synthetic uvby colors from recent Kurucz atmospheric models without overshooting. Our transformations appear to reproduce the observed colors of extremely metal-poor turnoff and giant stars (i.e., [Fe/H]<-2). Due to a number of assumptions made in the synthetic color calculations, however, our color-temperature relations for cool stars fail to provide a suitable match to the uvby photometry of both cluster and field stars having [Fe/H]>-2. To overcome this problem, the theoretical indices at intermediate and high metallicities have been corrected using a set of color calibrations based on field stars having accurate IRFM temperature estimates and spectroscopic [Fe/H] values. Encouragingly, isochrones that employ the transformations derived in this study are able to reproduce the observed CMDs (involving u-v, v-b, and b-y colors) for a number of open and globular clusters (including M92, M67, the Hyades, and 47Tuc) rather well. Moreover, our interpretations of such data are very similar, if not identical, with those given by VandenBerg & Clem (2003, AJ, 126, 778) from a consideration of BV(RI)c observations for the same clusters. In the present investigation, we have also analyzed the observed Stromgren photometry for the classic Population II subdwarfs, compared our "final" (b-y)-Teff relationship with those derived empirically in a number of recent studies, and examined in some detail the dependence of the m1 index on [Fe/H].Comment: 70 pages, 26 figures. Accepted for publication in AJ (Feb 2004). Postscript version with high resolution figures and complete Table 3 available at http://astrowww.phys.uvic.ca/~jclem/uvb

    The HII Region KR 140: Spontaneous Formation of a High Mass Star

    Full text link
    We have used a multiwavelength data set from the Canadian Galactic Plane Survey (CGPS) to study the Galactic HII region KR 140, both on the scale of the nebula itself and in the context of the star forming activity in the nearby W3/W4/W5 complex of molecular clouds and HII regions. From both radio and infrared data we have found a covering factor of about 0.5 for KR 140 and we interpret the nebula as a bowl-shaped region viewed close to face on. Extinction measurements place the region on the near side of its parent molecular cloud. The nebula is kept ionized by one O8.5 V(e) star, VES 735, which is less than a few million years old. CO data show that VES 735 has disrupted much of the original molecular cloud for which the estimated mass and density are about 5000 MM_{\odot} and 100 cm3^{-3}, respectively. KR 140 is isolated from the nearest star forming activity, in W3. Our data suggest that KR 140 is an example of spontaneous (i.e., non-triggered) formation of, unusually, a high mass star.Comment: 46 pages; includes 15 figures; accepted by the Ap

    Prevalence of distressing symptoms in hospitalised patients on medical wards: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many patients with advanced, serious, non-malignant disease belong to the population generally seen on medical wards. However, little research has been carried out on palliative care needs in this group. The aims of this study were to estimate the prevalence of distressing symptoms in patients hospitalised in a Department of Internal Medicine, estimate how many of these patients might be regarded as palliative, and describe their main symptoms.</p> <p>Methods</p> <p>Cross-sectional (point prevalence) study. All patients hospitalised in the Departments of Internal Medicine, Pulmonary Medicine, and Cardiology were asked to do a symptom assessment by use of the Edmonton Symptom Assessment System (ESAS). Patients were defined as "palliative" if they had an advanced, serious, chronic disease with limited life expectancy and symptom relief as the main goal of treatment.</p> <p>Results</p> <p>222 patients were registered in all. ESAS was completed for 160 patients. 79 (35.6%) were defined as palliative and 43 of them completed ESAS. The patients in the palliative group were older than the rest, and reported more dyspnea (70%) and a greater lack of wellbeing (70%). Other symptoms reported by this group were dry mouth (58%), fatigue (56%), depression (41%), anxiety (37%), pain at rest (30%), and pain on movement (42%).</p> <p>Conclusion</p> <p>More than one third of the patients in a Department of Internal Medicine were defined as palliative, and the majority of the patients in this palliative group reported severe symptoms. There is a need for skills in symptom control on medical wards.</p

    Ages of A-type Vega-like stars from uvbyβ\beta Photometry

    Full text link
    We have estimated the ages of a sample of A-type Vega-like stars by using Str\"{o}mgren \emph{uvby$\beta} photometric data and theoretical evolutionary tracks. We find that 13 percent of these A stars have been reported as Vega-like stars in the literature and that the ages of this subset run the gamut from very young (50~Myr) to old (1~Gyr), with no obvious age difference compared to those of field A stars. We clearly show that the fractional IR luminosity decreases with the ages of Vega-like stars.Comment: 4pages text, 3 tables, 3 figures, Accepted in Ap

    The Age-Metallicity Relation in the Thin Disk of the Galaxy

    Full text link
    HST trigonometric distances, photometric metallicities, isochronic ages from the second revised version of the Geneva--Copenhagen survey, and uniform spectroscopic Fe and Mg abundances from our master catalog are used to construct and analyze the age--metallicity and age-relative Mg abundance relations for stars of the thin disk. The influences of selection effects are discussed in detail. It is demonstrated that the radial migration of stars does not lead to appreciable distortions in the age dependence of the metallicity. During the first several billion years of the formation of the thin disk, the interstellar material in this disk was, on average, fairly rich in heavy elements ( ~-0.2) and poorly mixed. However, the metallicity dispersion continuously decreased with age, from \sigma_{[Fe/H]}~0.22 to ~0.13. All this time, the mean relative abundance of Mg was somewhat higher than the solar value (~0.1). Roughly four to five billion years ago, the mean metallicity began to systematically increase, while retaining the same dispersion; the mean relative Mg abundance began to decrease immediately following this. The number of stars in this subsystem increased sharply at the same time. These properties suggest that the star-formation rate was low in the initial stage of formation of the thin disk, but abruptly increased about four to five billion years ago.Comment: 16 page, 7 figures, accepted 2011, Astron. Rep., v.55, No.8, p.667-68

    Concurrence of Danish Dementia and Cataract: Insights from the Interactions of Dementia Associated Peptides with Eye Lens α-Crystallin

    Get PDF
    Familial Danish Dementia (FDD) is an autosomal disease, which is distinguished by gradual loss of vision, deafness, progressive ataxia and dementia. Cataract is the first manifestation of the disease. In this article, we demonstrate a specific correlation between the poisoning of the chaperone activity of the rat eye lens α-crystallins, loss of lens transparency in organ culture by the pathogenic form of the Danish dementia peptide, i.e. the reduced Danish dementia peptide (redADan peptide), by a combination of ex vivo, in vitro, biophysical and biochemical techniques. The interaction of redADan peptide and lens crystallins are very specific when compared with another chaperone, HSP-70, underscoring the specificity of the pathogenic form of Danish dementia peptide, redADan, for the early onset of cataract in this disease
    corecore