28 research outputs found

    Ecosystem development after mangrove wetland creation : plant–soil change across a 20-year chronosequence

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Ecosystems 15 (2012): 848-866, doi:10.1007/s10021-012-9551-1.Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses

    Systematic study of flow vector fluctuations in √SNN=5.02 TeV Pb-Pb collisions

    Get PDF
    Measurements of the pT-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, Phys. Rev. C 107, L051901 (2023)2469-998510.1103/PhysRevC.107.L051901] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pT-dependent flow vector fluctuations at sNN=5.02TeV with two-particle correlations. Significant pT-dependent fluctuations of the V - 2 flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to ∼15% being present in the 5% most central collisions. In parallel, no evidence of significant pT-dependent fluctuations of V - 3 or V - 4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pT, which might be biased by pT-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark-gluon plasma properties, and the dynamic evolution of the created system

    Notch Signaling Mediates Differentiation in Barrett\u27s Esophagus and Promotes Progression to Adenocarcinoma

    No full text
    © 2020 AGA Institute Background & Aims: Studies are needed to determine the mechanism by which Barrett\u27s esophagus (BE) progresses to esophageal adenocarcinoma (EAC). Notch signaling maintains stem cells in the gastrointestinal tract and is dysregulated during carcinogenesis. We explored the relationship between Notch signaling and goblet cell maturation, a feature of BE, during EAC pathogenesis. Methods: We measured goblet cell density and levels of Notch messenger RNAs in BE tissues from 164 patients, with and without dysplasia or EAC, enrolled in a multicenter study. We analyzed the effects of conditional expression of an activated form of NOTCH2 (pL2.Lgr5.N2IC), conditional deletion of NOTCH2 (pL2.Lgr5.N2fl/fl), or loss of nuclear factor κB (NF-κB) (pL2.Lgr5.p65fl/fl), in Lgr5+ (progenitor) cells in L2-IL1B mice (which overexpress interleukin 1 beta in esophagus and squamous forestomach and are used as a model of BE). We collected esophageal and stomach tissues and performed histology, immunohistochemistry, flow cytometry, transcriptome, and real-time polymerase chain reaction analyses. Cardia and forestomach tissues from mice were cultured as organoids and incubated with inhibitors of Notch or NF-kB. Results: Progression of BE to EAC was associated with a significant reduction in goblet cell density comparing nondysplastic regions of tissues from patients; there was an inverse correlation between goblet cell density and levels of NOTCH3 and JAG2 messenger RNA. In mice, expression of the activated intracellular form of NOTCH2 in Lgr5+ cells reduced goblet-like cell maturation, increased crypt fission, and accelerated the development of tumors in the squamocolumnar junction. Mice with deletion of NOTCH2 from Lgr5+ cells had increased maturation of goblet-like cells, reduced crypt fission, and developed fewer tumors. Esophageal tissues from in pL2.Lgr5.N2IC mice had increased levels of RelA (which encodes the p65 unit of NF-κB) compared to tissues from L2-IL1B mice, and we found evidence of increased NF-κB activity in Lgr5+ cells. Esophageal tissues from pL2.Lgr5.p65fl/fl mice had lower inflammation and metaplasia scores than pL2.Lgr5.N2IC mice. In organoids derived from pL2-IL1B mice, the NF-κB inhibitor JSH-23 reduced cell survival and proliferation. Conclusions: Notch signaling contributes to activation of NF-κB and regulates differentiation of gastric cardia progenitor cells in a mouse model of BE. In human esophageal tissues, progression of BE to EAC was associated with reduced goblet cell density and increased levels of Notch expression. Strategies to block this pathway might be developed to prevent EAC in patients with BE
    corecore