4,596 research outputs found

    Pupil mobility, attainment and progress in secondary school

    Get PDF
    This paper is the second of two articles arising from a study of the association between pupil mobility and attainment in national tests and examinations in an inner London borough. The first article (Strand & Demie, 2006) examined the association of pupil mobility with attainment and progress during primary school. It concluded that pupil mobility had little impact on performance in national tests at age 11, once pupils’ prior attainment at age 7 and other pupil background factors such as age, sex, special educational needs, stage of fluency in English and socio-economic disadvantage were taken into account. The present article reports the results for secondary schools (age 11-16). The results indicate that pupil mobility continues to have a significant negative association with performance in public examinations at age 16, even after including statistical controls for prior attainment at age 11 and other pupil background factors. Possible reasons for the contrasting results across school phases are explored. The implications for policy and further research are discussed

    Estimating Parameters of a Renewable Resource Model Without Population Data

    Get PDF
    A general approach to determining parameters of a traditional bioeconomic model is offered for the situation in which knowledge of resource abundance is unknown. Production parameters (such as catchability coefficients) and biological factors (such as natural mortality and recruitment) are included in the model. The general model is articulated for a typical fishery and further specified to obtain estimates of parameters for the St. John's River shad fishery. The results, considering the illustrative nature of the analysis, are promising and suggest avenues of additional research.Environmental Economics and Policy, Research Methods/ Statistical Methods, Resource /Energy Economics and Policy, Risk and Uncertainty,

    The Living Will: The Right to Death with Dignity?

    Get PDF

    The Living Will: The Right to Death with Dignity?

    Get PDF

    Methodological challenges when estimating the effects of season and seasonal exposures on birth outcomes

    Get PDF
    Background Many previous studies have found seasonal patterns in birth outcomes, but with little agreement about which season poses the highest risk. Some of the heterogeneity between studies may be explained by a previously unknown bias. The bias occurs in retrospective cohorts which include all births occurring within a fixed start and end date, which means shorter pregnancies are missed at the start of the study, and longer pregnancies are missed at the end. Our objective was to show the potential size of this bias and how to avoid it. Methods To demonstrate the bias we simulated a retrospective birth cohort with no seasonal pattern in gestation and used a range of cohort end dates. As a real example, we used a cohort of 114,063 singleton births in Brisbane between 1 July 2005 and 30 June 2009 and examined the bias when estimating changes in gestation length associated with season (using month of conception) and a seasonal exposure (temperature). We used survival analyses with temperature as a time-dependent variable. Results We found strong artificial seasonal patterns in gestation length by month of conception, which depended on the end date of the study. The bias was avoided when the day and month of the start date was just before the day and month of the end date (regardless of year), so that the longer gestations at the start of the study were balanced by the shorter gestations at the end. After removing the fixed cohort bias there was a noticeable change in the effect of temperature on gestation length. The adjusted hazard ratios were flatter at the extremes of temperature but steeper between 15 and 25°C. Conclusions Studies using retrospective birth cohorts should account for the fixed cohort bias by removing selected births to get unbiased estimates of seasonal health effects

    Petrology and Olivine Fabric of Lodranite NWA 2235

    Get PDF
    The Ninth Symposium on Polar Science/Ordinary sessions: [OA] Antarctic meteorites / Hayabusa, Tue. 4 Dec. / Conference hall of the Research/Administration Building (2nd floor) at the JAXA Sagamihara Campu

    Dual Bethe-Salpeter equation for the multi-orbital lattice susceptibility within dynamical mean-field theory

    Full text link
    Dynamical mean-field theory describes the impact of strong local correlation effects in many-electron systems. While the single-particle spectral function is directly obtained within the formalism, two-particle susceptibilities can also be obtained by solving the Bethe-Salpeter equation. The solution requires handling infinite matrices in Matsubara frequency space. This is commonly treated using a finite frequency cut-off, resulting in slow linear convergence. We show that decomposing the two-particle response in local and non-local contributions enables a reformulation of the Bethe-Salpeter equation inspired by the dual boson formalism. The re-formulation has a drastically improved cubic convergence with respect to the frequency cut-off, facilitating the calculation of susceptibilities in multi-orbital systems considerably. The dual Bethe-Salpeter equation uses the fully reducible vertex which is free from vertex divergences. We benchmark the approach on several systems including the spin susceptibility of strontium ruthenate Sr2_2RuO4_4, a strongly correlated Hund's metal with three active orbitals. We propose the dual Bethe-Salpeter equation as a new standard for calculating two-particle response within dynamical mean-field theory

    Identifying Structural Variation in Haploid Microbial Genomes from Short-Read Resequencing Data Using Breseq

    Get PDF
    Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. Results: We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for similar to 25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Conclusions: Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.U.S. National Institutes of Health R00-GM087550U.S. National Science Foundation (NSF) DEB-0515729NSF BEACON Center for the Study of Evolution in Action DBI-0939454Cancer Prevention & Research Institute of Texas (CPRIT) RP130124University of Texas at Austin startup fundsUniversity of Texas at AustinCPRIT Cancer Research TraineeshipMolecular Bioscience
    • …
    corecore