812 research outputs found
Diffeomorphisms as Symplectomorphisms in History Phase Space: Bosonic String Model
The structure of the history phase space of a covariant field system
and its history group (in the sense of Isham and Linden) is analyzed on an
example of a bosonic string. The history space includes the time map
from the spacetime manifold (the two-sheet) to a
one-dimensional time manifold as one of its configuration variables. A
canonical history action is posited on such that its restriction to
the configuration history space yields the familiar Polyakov action. The
standard Dirac-ADM action is shown to be identical with the canonical history
action, the only difference being that the underlying action is expressed in
two different coordinate charts on . The canonical history action
encompasses all individual Dirac-ADM actions corresponding to different choices
of foliating . The history Poisson brackets of spacetime fields
on induce the ordinary Poisson brackets of spatial fields in the
instantaneous phase space of the Dirac-ADM formalism. The
canonical history action is manifestly invariant both under spacetime
diffeomorphisms Diff and temporal diffeomorphisms Diff. Both of
these diffeomorphisms are explicitly represented by symplectomorphisms on the
history phase space . The resulting classical history phase space
formalism is offered as a starting point for projection operator quantization
and consistent histories interpretation of the bosonic string model.Comment: 45 pages, no figure
Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet, obesity and cancer
Background:
The related tumour suppressor proteins Deleted in Colorectal Cancer (DCC) and neogenin are absent or weakly expressed in many cancers, whereas their insertion into cells suppresses oncogenic behaviour. Serine proteases influence the initiation and progression of cancers although the mechanisms are unknown.
Methods:
The effects of environmental (bacterial subtilisin) and endogenous mammalian (chymotrypsin) serine proteases were examined on protein expression in fresh, normal tissue and human neuroblastoma and mammary adenocarcinoma lines. Cell proliferation and migration assays (chemoattraction and wound closure) were used to examine cell function. Cells lacking DCC were transfected with an ectopic dcc plasmid.
Results:
Subtilisin and chymotrypsin selectively depleted DCC and neogenin from cells at nanomolar concentrations without affecting related proteins. Cells showed reduced adherence and increased migration, but after washing they re-attached within 24Â h, with recovery of protein expression. These effects are induced by chymotryptic activity as they are prevented by chymostatin and the soybean Bowman-Birk inhibitor typical of many plant protease inhibitors.
Conclusions:
Bacillus subtilis, which secretes subtilisin is widely present in soil, the environment and the intestinal contents, while subtilisin itself is used in meat processing, animal feed probiotics and many household cleaning agents. With chymotrypsin present in chyme, blood and tissues, these proteases may contribute to cancer development by depleting DCC and neogenin. Blocking their activity by Bowman-Birk inhibitors may explain the protective effects of a plant diet. Our findings identify a potential non-genetic contribution to cancer cell behaviour which may explain both the association of processed meats and other factors with cancer incidence and the protection afforded by plant-rich diets, with significant implications for cancer prevention
On Relativistic Material Reference Systems
This work closes certain gaps in the literature on material reference systems
in general relativity. It is shown that perfect fluids are a special case of
DeWitt's relativistic elastic media and that the velocity--potential formalism
for perfect fluids can be interpreted as describing a perfect fluid coupled to
a fleet of clocks. A Hamiltonian analysis of the elastic media with clocks is
carried out and the constraints that arise when the system is coupled to
gravity are studied. When the Hamiltonian constraint is resolved with respect
to the clock momentum, the resulting true Hamiltonian is found to be a
functional only of the gravitational variables. The true Hamiltonian is
explicitly displayed when the medium is dust, and is shown to depend on the
detailed construction of the clocks.Comment: 18 pages, ReVTe
Influence of grain-refiner addition on the morphology of fe-bearing intermetallics in a semi-solid processed Al-Mg-Si alloy
Š The Minerals, Metals & Materials Society and ASM International 2013The three-dimensional morphologies of the Fe-bearing intermetallics in a semisolid-processed Al-Mg-Si alloy were examined after extracting the intermetallics. ι -AlFeSi and β-AlFeSi are the major Fe-bearing intermetallics. Addition of Al-Ti-B grain refiner typically promotes β-AlFeSi formation. β-AlFeSi was observed with a flat, plate-like morphology with angular edges in the alloy with and without grain refiner, whereas ι -AlFeSi was observed as "flower"-like morphology in the alloy with grain refiner. Š 2013 The Minerals, Metals & Materials Society and ASM International
Statistical properties of phases and delay times of the one-dimensional Anderson model with one open channel
We study the distribution of phases and of Wigner delay times for a
one-dimensional Anderson model with one open channel. Our approach, based on
classical Hamiltonian maps, allows us an analytical treatment. We find that the
distribution of phases depends drastically on the parameter where is the variance of the disorder distribution and
the wavevector. It undergoes a transition from uniformity to singular
behaviour as increases. The distribution of delay times shows
universal power law tails , while the short time behaviour is
- dependent.Comment: 4 pages, 2 figures, Submitted to PR
Mycobacterium bovis shedding patterns from experimentally infected calves and the effect of concurrent infection with bovine viral diarrhoea virus
Concurrent infection of cattle with bovine viral diarrhoea virus (BVDV) and Mycobacterium bovis is considered to be a possible risk factor for onward transmission of bovine tuberculosis (BTB) in infected cattle and is known to compromise diagnostic tests. A comparison is made here of M. bovis shedding (i.e. release) characteristics from 12 calves, six experimentally co-infected with BVDV and six infected with M. bovis alone, using simple models of bacterial replication. These statistical and mathematical models account for the intermittent or episodic nature of shedding, the dynamics of within-host bacterial proliferation and the sampling distribution from a given shedding episode. We show that while there are distinct differences among the shedding patterns of calves given the same infecting dose, there is no statistically significant difference between the two groups of calves. Such differences as there are, can be explained solely in terms of the shedding frequency, but with all calves potentially excreting the same amount of bacteria in a given shedding episode post-infection. The model can be thought of as a process of the bacteria becoming established in a number of discrete foci of colonization, rather than as a more generalized infection of the respiratory tract. In this case, the variability in the shedding patterns of the infected calves can be explained solely by differences in the number of foci established and shedding being from individual foci over time. Should maximum exposure on a particular occasion be a critical consideration for cattle-to-cattle transmission of BTB, cattle that shed only intermittently may still make an important contribution to the spread and persistence of the disease
`What is a Thing?': Topos Theory in the Foundations of Physics
The goal of this paper is to summarise the first steps in developing a
fundamentally new way of constructing theories of physics. The motivation comes
from a desire to address certain deep issues that arise when contemplating
quantum theories of space and time. In doing so we provide a new answer to
Heidegger's timeless question ``What is a thing?''.
Our basic contention is that constructing a theory of physics is equivalent
to finding a representation in a topos of a certain formal language that is
attached to the system. Classical physics uses the topos of sets. Other
theories involve a different topos. For the types of theory discussed in this
paper, a key goal is to represent any physical quantity with an arrow
\breve{A}_\phi:\Si_\phi\map\R_\phi where \Si_\phi and are two
special objects (the `state-object' and `quantity-value object') in the
appropriate topos, .
We discuss two different types of language that can be attached to a system,
. The first, \PL{S}, is a propositional language; the second, \L{S}, is
a higher-order, typed language. Both languages provide deductive systems with
an intuitionistic logic. With the aid of \PL{S} we expand and develop some of
the earlier work (By CJI and collaborators.) on topos theory and quantum
physics. A key step is a process we term `daseinisation' by which a projection
operator is mapped to a sub-object of the spectral presheaf \Sig--the topos
quantum analogue of a classical state space. The topos concerned is \SetH{}:
the category of contravariant set-valued functors on the category (partially
ordered set) \V{} of commutative sub-algebras of the algebra of bounded
operators on the quantum Hilbert space \Hi.Comment: To appear in ``New Structures in Physics'' ed R. Coeck
Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012
We report on the kinematics of two interacting CMEs observed on 13 and 14
June 2012. Both CMEs originated from the same active region NOAA 11504. After
their launches which were separated by several hours, they were observed to
interact at a distance of 100 Rs from the Sun. The interaction led to a
moderate geomagnetic storm at the Earth with Dst index of approximately, -86
nT. The kinematics of the two CMEs is estimated using data from the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar
Terrestrial Relations Observatory (STEREO). Assuming a head-on collision
scenario, we find that the collision is inelastic in nature. Further, the
signatures of their interaction are examined using the in situ observations
obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is
also found that this interaction event led to the strongest sudden storm
commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The
SSC was of long duration, approximately 20 hours. The role of interacting CMEs
in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa
Model-based Luenberger state observer for detecting interturn short-circuits in PM machines
This paper proposes a novel model-based Luenberger state observer for interturn short-circuit (ITSC) fault diagnostics. The residuals between the observed currents and the measured currents in the ι- and β-axes serve as fault indicator, which can be used to detect ITSC faults not only at an early stage with contact resistance but also at the fully short-circuited stage. These currents are observed by the Luenberger observer, which is designed under the assumption that the machine is operating in a healthy condition. In addition, the investigation results indicate that with greater fault ratio, larger load current and higher speed, detecting the ITSC fault becomes easier. Moreover, three sets of Luenberger observers, assuming the ITSC fault is in phases A, B, and C, respectively, have been designed to identify the faulted phase. A series of experiments have been carried out to validate the developed fault detection method
Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems
An approach to experimentally exploring electronic correlation functions in
mesoscopic regimes is proposed. The idea is to monitor the mesoscopic
fluctuations of a tunneling current flowing between the two layers of a
semiconductor double-quantum-well structure. From the dependence of these
fluctuations on external parameters, such as in-plane or perpendicular magnetic
fields, external bias voltages, etc., the temporal and spatial dependence of
various prominent correlation functions of mesoscopic physics can be
determined. Due to the absence of spatially localized external probes, the
method provides a way to explore the interplay of interaction and localization
effects in two-dimensional systems within a relatively unperturbed environment.
We describe the theoretical background of the approach and quantitatively
discuss the behavior of the current fluctuations in diffusive and ergodic
regimes. The influence of both various interaction mechanisms and localization
effects on the current is discussed. Finally a proposal is made on how, at
least in principle, the method may be used to experimentally determine the
relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include
- âŚ