13 research outputs found

    A quasi-complete mechanical model for a double torsion pendulum

    Full text link
    We present a dynamical model for the double torsion pendulum nicknamed PETER, where one torsion pendulum hangs in cascade, but off-axis, from the other. The dynamics of interest in these devices lies around the torsional resonance, that is at very low frequencies (mHz). However, we find that, in order to properly describe the forced motion of the pendulums, also other modes must be considered, namely swinging and bouncing oscillations of the two suspended masses, that resonate at higher frequencies (Hz). Although the system has obviously 6+6 Degrees of Freedom, we find that 8 are sufficient for an accurate description of the observed motion. This model produces reliable estimates of the response to generic external disturbances and actuating forces or torques. In particular, we compute the effect of seismic floor motion (tilt noise) on the low frequency part of the signal spectra and show that it properly accounts for most of the measured low frequency noise.Comment: 15 pages, 6 figure

    CALET on the International Space Station: a precise measurement of the iron spectrum

    Get PDF
    The Calorimetric Electron Telescope (CALET) was launched on the International Space Station in 2015 and since then has collected a large sample of cosmic-ray charged particles over a wide energy. Thanks to a couple of layers of segmented plastic scintillators placed on top of the detector, the instrument is able to identify the charge of individual elements from proton to iron (and above). The imaging tungsten scintillating fiber calorimeter provides accurate particle tracking and the lead tungstate homogeneous calorimeter can measured the energy with a wide dynamic range. One of the CALET scientific objectives is to measure the energy spectra of cosmic rays to shed light on their acceleration and propagation in the Galaxy. By the observation in first five years, a precise measurement of the iron spectrum is now available in the range of kinetic energy per nucleon from 10 GeV/n to 2 TeV/n. The CALET’s result with a description of the analysis and details on systematic uncertainties will be illustrated. Also, a comparison with previous experiments’ results is given

    CALET on the International Space Station: new direct measurements of cosmic-ray iron and nickel

    Get PDF
    The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray over a wide energy interval. Approximately 20 million triggered events per month are recorded with energies > 10 GeV. The instrument identifies the charge of individual elements up to nickel and beyond and, thanks to a homogeneous lead-tungstate calorimeter, it measures the energy of cosmic-ray nuclei providing a direct measurement of their spectra. Iron and nickel spectra are a low background measurement with negligible contamination from spallation of higher mass elements. Iron and nickel nuclei play a key role in understanding the acceleration and propagation mechanisms of charged particles in our Galaxy. In this contribution a direct measurement of iron and nickel spectra, based on more than five years of data, are presented in the energy range from 10 GeV/n to 2 TeV/n and from 8.8 GeV/n to 240 GeV/n, respectively. The spectra are compatible within the errors with a single power law in the energy region from 50 GeV/n to 2 TeV/n and from 20 GeV/n to 240 GeV/n, respectively. Systematic uncertainties are detailed and the nickel to iron flux ratio is presented. This unprecedented measurement confirms that both elements have very similar fluxes in shape and energy dependence, suggesting that their origin, acceleration, and propagation might be explained invoking an identical mechanism in the energy range explored so far

    The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations

    Get PDF
    Calorimetric space experiments were employed for the direct measurements of cosmic-ray spectra above the TeV region. According to several theoretical models and recent measurements, relevant features in both electron and nucleus fluxes are expected. Unfortunately, sizable disagreements among the current results of different space calorimeters exist. In order to improve the accuracy of future experiments, it is fundamental to understand the reasons of these discrepancies, especially since they are not compatible with the quoted experimental errors. A few articles of different collaborations suggest that a systematic error of a few percentage points related to the energy-scale calibration could explain these differences. In this work, we analyze the impact of the nonproportionality of the light yield of scintillating crystals on the energy scale of typical calorimeters. Space calorimeters are usually calibrated by employing minimal ionizing particles (MIPs), e.g., nonshowering proton or helium nuclei, which feature different ionization density distributions with respect to particles included in showers. By using the experimental data obtained by the CaloCube collaboration and a minimalist model of the light yield as a function of the ionization density, several scintillating crystals (BGO, CsI(Tl), LYSO, YAP, YAG and BaF2) are characterized. Then, the response of a few crystals is implemented inside the Monte Carlo simulation of a space calorimeter to check the energy deposited by electromagnetic and hadronic showers. The results of this work show that the energy scale obtained by MIP calibration could be affected by sizable systematic errors if the nonproportionality of scintillation light is not properly taken into account

    Calet upper limits on X-RAY and GAMMA-RAY counterparts of GW151226

    Get PDF
    We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 ×10-7 erg cm-2 s-1 in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7σ upper limits are 1.0 ×10-6 erg cm-2 s-1 (7-500 keV) and 1.8 ×10-6 erg cm-2 s-1 (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5 ×1049 erg s-1, which is significantly lower than typical short GRBs

    Energy calibration of CALET onboard the International Space Station

    Get PDF
    In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement

    Identification of Cosmic Nuclei with the CALET Electron Telescope on the International Space Station

    No full text
    CALET (CALorimetric Electron Telescope) is a high energy astroparticle physics experiment designed for long-term observations of high-energy Cosmic Rays (CRs) on the International Space Station (ISS). The mission is funded by the Japanese Space Agency (JAXA), in collaboration with the Italian Space Agency (ASI) and NASA. CALET reached the ISS on August 24, 2015 and, at the time of writing, the instrument is operating in science data mode: a two year period of observations has started with a target of 5 years. The purpose of the experiment is to perform precise measurements of high energy cosmic rays, with an extensive physics program that includes the detection of possible nearby sources of high energy electrons; searches for signatures of dark matter in the spectra of electrons and γ rays; monitoring gamma-ray transients and solar modulation; long exposure observations of cosmic nuclei from proton to iron and trans-iron elements; measurements of the CR relative abundances and secondary-to-primary ratios. The telescope is an all-calorimetric instrument, with a total thickness of 30 radiation length (X 0 ) and 1.3 proton interaction length (λ I ), preceded by a particle identification system. The instrument is composed of three main subsystem: at the top a Charge Detector (CHD) identifies the individual chemical elements in the cosmic-ray flux, then a fine granulated pre-shower IMaging Calorimeter (IMC) is followed by a Total Absorption Calorimeter (TASC) measuring the energy released. The CHD is designed to provide incident particle charge measurement over a wide dynamic range, from Z = 1 to Z = 40 with sufficient charge resolution to resolve individual elements. The IMC can image the early shower profile and reconstruct the incident direction of cosmic rays with good angular resolution. The TASC measures the total energy of the incident particle and discriminates electrons and gamma-rays from hadrons. The main subject of the present thesis is the study of the performance of CALET in the identification of cosmic nuclei, by combining both IMC and CHD detectors. A clear identification of the incoming nuclei and the measurement of their energy is crucial both to measure absolute fluxes and the ratio of the fluxes of secondary-to-primary elements. From measurements of the energy dependence of the flux ratio it is possible to discriminate among different models of CR propagation in the galaxy. The first chapter of the thesis provides an introduction to cosmic-ray physics, cosmic-ray propagation and acceleration. In chapter 2 the CALET instrument is described in detail and the anticipated telescope performances and the experimental program are reported. Chapters 3 and 4 include the original work of this thesis. The third chapter is focused on two aspects of the energy calibration process: the first one related to the energy position dependence correction in CHD, the second one to the correction for the quenching effect in the CHD and IMC. The fourth chapter is focused on the identification of cosmic nuclei: charge tagging using both the IMC and the CHD and the performance in terms of the charge resolution of both detectors are described in view of an accurate determination of light element fluxes with CALET. Finally in chapter 5 an overview on the current status of the CALET mission is given

    Photon counting with a FDIRC Cherenkov prototype readout by SiPM arrays

    No full text
    A prototype of a Focused Internal Reflection Cherenkov, equipped with 16 arrays of NUV-SiPM, was tested at CERN SPS in March 2015 with beams of relativistic ions at 13, 19 and 30 GeV/n obtained from fragmentation of an Ar primary beam. The detector, designed to identify cosmic nuclei, features a Fused Silica radiator bar optically connected to a cylindrical mirror of the same material and an imaging focal plane of dimensions ∼4 cm×3 cm covered with a total of 1024 SiPM photosensors. Thanks to the outstanding performance of the SiPM arrays, the detector could be operated in photon counting mode as a fully digital device. The Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z2 as a function of the atomic number Z of the beam particle. In this paper, we report on the characterization and test of the SiPM arrays and the performance of the Cherenkov prototype for the charge identification of the beam particles
    corecore