5,840 research outputs found

    Systems validation: application to statistical programs

    Get PDF
    BACKGROUND: In 2003, the United States Food and Drug Administration (FDA) released a guidance document on the scope of "Part 11" enforcement. In this guidance document, the FDA indicates an expectation of a risk-based approach to determining which systems should undergo validation. Since statistical programs manage and manipulate raw data, their implementation should be critically reviewed to determine whether or not they should undergo validation. However, the concepts of validation are not often discussed in biostatistics curriculum. DISCUSSION: This paper summarizes a "Plan, Do, Say" approach to validation that can be incorporated into statistical training so that biostatisticians can understand and implement validation principles in their research. SUMMARY: Validation is a process that requires dedicated attention. The process of validation can be easily understood in the context of the scientific method

    Well structured program equivalence is highly undecidable

    Full text link
    We show that strict deterministic propositional dynamic logic with intersection is highly undecidable, solving a problem in the Stanford Encyclopedia of Philosophy. In fact we show something quite a bit stronger. We introduce the construction of program equivalence, which returns the value T\mathsf{T} precisely when two given programs are equivalent on halting computations. We show that virtually any variant of propositional dynamic logic has Π11\Pi_1^1-hard validity problem if it can express even just the equivalence of well-structured programs with the empty program \texttt{skip}. We also show, in these cases, that the set of propositional statements valid over finite models is not recursively enumerable, so there is not even an axiomatisation for finitely valid propositions.Comment: 8 page

    Monte Carlo aided design of the inner muon veto detectors for the Double Chooz experiment

    Full text link
    The Double Chooz neutrino experiment aims to measure the last unknown neutrino mixing angle theta_13 using two identical detectors positioned at sites both near and far from the reactor cores of the Chooz nuclear power plant. To suppress correlated background induced by cosmic muons in the detectors, they are protected by veto detector systems. One of these systems is the inner muon veto. It is an active liquid scintillator based detector and instrumented with encapsulated photomultiplier tubes. In this paper we describe the Monte Carlo aided design process of the inner muon veto, that resulted in a detector configuration with 78 PMTs yielding an efficiency of 99.978 +- 0.004% for rejecting muon events and an efficiency of >98.98% for rejecting correlated events induced by muons. A veto detector of this design is currently used at the far detector site and will be built and incorporated as the muon identification system at the near site of the Double Chooz experiment

    Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.

    Get PDF
    The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories

    The Stochastic Dynamics of Rectangular and V-shaped Atomic Force Microscope Cantilevers in a Viscous Fluid and Near a Solid Boundary

    Full text link
    Using a thermodynamic approach based upon the fluctuation-dissipation theorem we quantify the stochastic dynamics of rectangular and V-shaped microscale cantilevers immersed in a viscous fluid. We show that the stochastic cantilever dynamics as measured by the displacement of the cantilever tip or by the angle of the cantilever tip are different. We trace this difference to contributions from the higher modes of the cantilever. We find that contributions from the higher modes are significant in the dynamics of the cantilever tip-angle. For the V-shaped cantilever the resulting flow field is three-dimensional and complex in contrast to what is found for a long and slender rectangular cantilever. Despite this complexity the stochastic dynamics can be predicted using a two-dimensional model with an appropriately chosen length scale. We also quantify the increased fluid dissipation that results as a V-shaped cantilever is brought near a solid planar boundary.Comment: 10 pages, 15 images, corrected equation (8

    Recycled Pulsars Discovered at High Radio Frequency

    Get PDF
    We present the timing parameters of nine pulsars discovered in a survey of intermediate Galactic latitudes at 1400 MHz with the Parkes radio telescope. Eight of these pulsars possess small pulse periods and period derivatives thought to be indicative of ``recycling''. Six of the pulsars are in circular binary systems, including two with relatively massive white dwarf companions. We discuss the implications of these new systems for theories of binary formation and evolution. One long-period pulsar (J1410-7404) has a moderately weak magnetic field and an exceedingly narrow average pulse profile, similar to other recycled pulsars.Comment: 9 pages, 4 figures. Accepted for publication in Ap

    Structure-function mapping of a heptameric module in the nuclear pore complex.

    Get PDF
    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ~600-kD heptameric Nup84 complex, to a precision of ~1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain-mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC's interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution

    Qudit Quantum State Tomography

    Get PDF
    Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quantum device. It allows the complete reconstruction of the state produced from a given input into the device. From this reconstructed density matrix, relevant quantum information quantities such as the degree of entanglement and entropy can be calculated. Generally orthogonal measurements have been discussed for this tomographic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes. First we show how non-orthogonal measurement allow the reconstruction of the state of the system provided the measurements span the Hilbert space. We then detail how quantum state tomography can be performed for multi qudits with a specific example illustrating how to achieve this in one and two qutrit systems.Comment: 6 pages, 4 figures, submitted to PR
    • 

    corecore