8,221 research outputs found

    Validity of the Hadronic Freeze-Out Curve

    Full text link
    We analyze hadro-chemical freeze-out in central Pb+Pb collisions at CERN SPS energies, employing the hybrid version of UrQMD which models hadronization by the Cooper-Frye mechanism, and matches to a final hadron-resonance cascade. We fit the results both before and after the cascade stage using the Statistical Hadronization Model, to assess the effect of the cascade phase. We observe a strong effect on antibaryon yields except anti-{\Omega}, resulting in a shift in T and {\mu}_B. We discuss the implications for the freeze-out curve.Comment: 5 pages, 8 figures. To appear in the proceedings of Quark Matter 2011, the XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collision

    Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line

    Get PDF
    We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon-nucleon centre-of-mass energy range 4.7-2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of approximate isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained "true" hadronization pseudo-critical line kappa is found to be 0.0048 +- 0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing mu_B is found to be 164.3+-1.8 MeV.Comment: 9 pages, 2 figures. Minor corrections, version published in PL

    Chemical equilibrium study in nucleus-nucleus collisions at relativistic energies

    Get PDF
    We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the strangeness production as a function of centre of mass energy and of the parameters of the source. We have tested and compared different versions of the statistical model, with special emphasis on possible explanations of the observed strangeness hadronic phase space under-saturation. We show that, in this energy range, the use of hadron yields at midrapidity instead of in full phase space artificially enhances strangeness production and could lead to incorrect conclusions as far as the occurrence of full chemical equilibrium is concerned. In addition to the basic model with an extra strange quark non-equilibrium parameter, we have tested three more schemes: a two-component model superimposing hadrons coming out of single nucleon-nucleon interactions to those emerging from large fireballs at equilibrium, a model with local strangeness neutrality and a model with strange and light quark non-equilibrium parameters. The behaviour of the source parameters as a function of colliding system and collision energy is studied. The description of strangeness production entails a non-monotonic energy dependence of strangeness saturation parameter gamma_S with a maximum around 30A GeV. We also present predictions of the production rates of still unmeasured hadrons including the newly discovered Theta^+(1540) pentaquark baryon.Comment: 36 pages, 14 figures. Revised version published in Phys. Rev. C: title changed, one paragraph added in section 2, other typos correcte

    Hadronic Freeze-Out in A+A Collisions meets the Lattice QCD Parton-Hadron Transition Line

    Full text link
    We analyze hadrochemical freeze-out in central Pb+Pb collisions at CERN SPS and LHC energies. Employing the UrQMD hybrid transport model we study the effects of the final hadron/resonance expansion phase on the hadron multiplicities established at hadronization. The bulk meson yields freeze out directly at hadronization whereas the baryon-antibaryon sector is subject to significant alterations, due to annihilation and regeneration processes. We quantify the latter changes by survival factors for each species which are applied to modify the statistical model predictions for the data. The modified SM analysis recovers the hadronization points, which coincide with the recent lattice QCD predictions of the parton-hadron transition line at finite baryochemical potential.Comment: Proceedings of the 8th International Workshop on Critical Point and Onset of Deconfinement, March 11 to 15, 2013 Napa, California, US

    Economies of Size for Conventional Tillage and No-till Wheat Production

    Get PDF
    Production costs and economies of size for both conventional tillage and no-till wheat production were determined. The reduction in the price of glyphosate after the patent expired improved the relative economics of no-till for continuous monoculture winter wheat. Production costs differ across farm size and by production system.Crop Production/Industries,

    Price, Profits and Production

    Get PDF

    From soft harmonic phonons to fast relaxational dynamics in CH3_{3}NH3_{3}PbBr3_{3}

    Full text link
    The lead-halide perovskites, including CH3_{3}NH3_{3}PbBr3_{3}, are components in cost effective, highly efficient photovoltaics, where the interactions of the molecular cations with the inorganic framework are suggested to influence the electronic and ferroelectric properties. CH3_{3}NH3_{3}PbBr3_{3} undergoes a series of structural transitions associated with orientational order of the CH3_{3}NH3_{3} (MA) molecular cation and tilting of the PbBr3_{3} host framework. We apply high-resolution neutron scattering to study the soft harmonic phonons associated with these transitions, and find a strong coupling between the PbBr3_{3} framework and the quasistatic CH3_{3}NH3_{3} dynamics at low energy transfers. At higher energy transfers, we observe a PbBr6_{6} octahedra soft mode driving a transition at 150 K from bound molecular excitations at low temperatures to relatively fast relaxational excitations that extend up to \sim 50-100 meV. We suggest that these temporally overdamped dynamics enables possible indirect band gap processes in these materials that are related to the enhanced photovoltaic properties.Comment: (main text - 5 pages, 4 figures; supplementary information - 3 pages, 3 figures

    A scalable, high-speed measurement-based quantum computer using trapped ions

    Full text link
    We describe a scalable, high-speed, and robust architecture for measurement-based quantum-computing with trapped ions. Measurement-based architectures offer a way to speed-up operation of a quantum computer significantly by parallelizing the slow entangling operations and transferring the speed requirement to fast measurement of qubits. We show that a 3D cluster state suitable for fault-tolerant measurement-based quantum computing can be implemented on a 2D array of ion traps. We propose the projective measurement of ions via multi-photon photoionization for nanosecond operation and discuss the viability of such a scheme for Ca ions.Comment: 4 pages, 3 figure
    corecore