7,373 research outputs found

    Scaling of Non-Perturbatively O(a) Improved Wilson Fermions: Hadron Spectrum, Quark Masses and Decay Constants

    Get PDF
    We compute the hadron mass spectrum, the quark masses and the meson decay constants in quenched lattice QCD with non-perturbatively O(a)O(a) improved Wilson fermions. The calculations are done for two values of the coupling constant, β=6.0\beta = 6.0 and 6.2, and the results are compared with the predictions of ordinary Wilson fermions. We find that the improved action reduces lattice artifacts as expected

    A Bayesian framework for verification and recalibration of ensemble forecasts: How uncertain is NAO predictability?

    Get PDF
    Predictability estimates of ensemble prediction systems are uncertain due to limited numbers of past forecasts and observations. To account for such uncertainty, this paper proposes a Bayesian inferential framework that provides a simple 6-parameter representation of ensemble forecasting systems and the corresponding observations. The framework is probabilistic, and thus allows for quantifying uncertainty in predictability measures such as correlation skill and signal-to-noise ratios. It also provides a natural way to produce recalibrated probabilistic predictions from uncalibrated ensembles forecasts. The framework is used to address important questions concerning the skill of winter hindcasts of the North Atlantic Oscillation for 1992-2011 issued by the Met Office GloSea5 climate prediction system. Although there is much uncertainty in the correlation between ensemble mean and observations, there is strong evidence of skill: the 95% credible interval of the correlation coefficient of [0.19,0.68] does not overlap zero. There is also strong evidence that the forecasts are not exchangeable with the observations: With over 99% certainty, the signal-to-noise ratio of the forecasts is smaller than the signal-to-noise ratio of the observations, which suggests that raw forecasts should not be taken as representative scenarios of the observations. Forecast recalibration is thus required, which can be coherently addressed within the proposed framework.Comment: 36 pages, 10 figure

    MSW-like Enhancements without Matter

    Full text link
    We study the effects of a scalar field, coupled only to neutrinos, on oscillations among weak interaction current eigenstates. The effect of a real scalar field appears as effective masses for the neutrino mass eigenstates, the same for \nbar as for \n. Under some conditions, this can lead to a vanishing of δm2\delta m^2, giving rise to MSW-like effects. We discuss some examples and show that it is possible to resolve the apparent discrepancy in spectra required by r-process nucleosynthesis in the mantles of supernovae and by Solar neutrino solutions.Comment: 9 pages, latex, 1 figur

    Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models

    Full text link
    We study the effect of antiferromagnetic interactions on the single spin-flip Glauber dynamics of two different one-dimensional (1D) Ising models with spin ±1\pm 1. The first model is an Ising chain with antiferromagnetic exchange interaction limited to nearest neighbors and subject to an oscillating magnetic field. The system of master equations describing the time evolution of sublattice magnetizations can easily be solved within a linear field approximation and a long time limit. Resonant behavior of the magnetization as a function of temperature (stochastic resonance) is found, at low frequency, only when spins on opposite sublattices are uncompensated owing to different gyromagnetic factors (i.e., in the presence of a ferrimagnetic short range order). The second model is the axial next-nearest neighbor Ising (ANNNI) chain, where an antiferromagnetic exchange between next-nearest neighbors (nnn) is assumed to compete with a nearest-neighbor (nn) exchange interaction of either sign. The long time response of the model to a weak, oscillating magnetic field is investigated in the framework of a decoupling approximation for three-spin correlation functions, which is required to close the system of master equations. The calculation, within such an approximate theoretical scheme, of the dynamic critical exponent z, defined as 1/τ(1/ξ)z{1/\tau} \approx ({1/ {\xi}})^z (where \tau is the longest relaxation time and \xi is the correlation length of the chain), suggests that the T=0 single spin-flip Glauber dynamics of the ANNNI chain is in a different universality class than that of the unfrustrated Ising chain.Comment: 5 figures. Phys. Rev. B (accepted July 12, 2007

    London measure of Unplanned Pregnancy: guidance for its use as an outcome measure

    Get PDF
    Background: The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or ­preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods: Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results: There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion: We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies

    Elementary excitations in the gapped phase of a frustrated S=1/2 spin ladder: from spinons to the Haldane triplet

    Full text link
    We use the variational matrix-product ansatz to study elementary excitations in the S=1/2 ladder with additional diagonal coupling, equivalent to a single S=1/2 chain with alternating exchange and next-nearest neighbor interaction. In absence of alternation the elementary excitation consists of two free S=1/2 particles ("spinons") which are solitons in the dimer order. When the nearest-neighbor exchange alternates, the "spinons" are confined into one S=1 excitation being a soliton in the generalized string order. Variational results are found to be in a qualitative agreement with the exact diagonalization data for 24 spins. We argue that such an approach gives a reasonably good description in a wide range of the model parameters.Comment: RevTeX, 13 pages, 11 embedded figures, uses psfig and multico
    corecore