23,477 research outputs found

    Effective Fitness Landscapes for Evolutionary Systems

    Full text link
    In evolution theory the concept of a fitness landscape has played an important role, evolution itself being portrayed as a hill-climbing process on a rugged landscape. In this article it is shown that in general, in the presence of other genetic operators such as mutation and recombination, hill-climbing is the exception rather than the rule. This descrepency can be traced to the different ways that the concept of fitness appears --- as a measure of the number of fit offspring, or as a measure of the probability to reach reproductive age. Effective fitness models the former not the latter and gives an intuitive way to understand population dynamics as flows on an effective fitness landscape when genetic operators other than selection play an important role. The efficacy of the concept is shown using several simple analytic examples and also some more complicated cases illustrated by simulations.Comment: 11 pages, 8 postscript figure

    The B2 aluminides as alternative materials

    Get PDF
    The potential of the B2 aluminides as structural material alternatives for the strategic element containing superalloys currently used in gas turbine engines is being explored with emphasis on the equiatomic Fe and Ni aluminides. Although Co is a strategic material, the equiatomic Co aluminide is also being studied to gain a more complete understanding of these fourth period intermetallics. Research focuses on initial processing techniques such as ingot melting, power metallurgy, and rapid solidification with and without additional thermomechanical processing; high temperature deformation - primarily compressive creep; compositional effects within the binary B2 aluminides; third-element alloying addition effects on high temperature strength and oxidation resistance, and near room temperature ductility as influenced by processing, alloying, and grain size. Various programs now underway are reviewed and some highlights of research results are presented

    High toughness-high strength iron alloy

    Get PDF
    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment

    NASA's activities in the conservation of strategic aerospace materials

    Get PDF
    The primary objective of the Conservation of Strategic Aerospace Materials (COSAM) Program is to help reduce the dependence of the United States aerospace industry on strategic metals by providing the materials technology needed to minimize the strategic metal content of critical aerospace components with prime emphasis on components for gas turbine engines. Initial emphasis was placed in the area of strategic element substinction. Specifically, the role of cobalt in nickel base and cobalt base superalloys vital to the aerospace industry is being examined in great detail by means of cooperative university-industry-government research efforts. Investigations are underway in the area of "new classes" of alloys. Specifically, a study was undertaken to investigate the mechanical and physical properties of intermetallics that contain a minimum of the strategic metals. Current plans for the much larger COSAM Program are also presented

    Effects of long-term aging on ductility of the columbium alloys C-103, Cb-1Zr, and Cb-752 and the molybdenum alloy Mo-TZM

    Get PDF
    A program was conducted to determine if aging embrittlement occurs in the columbium alloys C-103, CB-1Zr, and Cb-752 or in the molybdenum alloy Mo-TZM. Results showed that aging embrittlement does not occur in C-103, Cb-1Zr, or Mo-TZM during long-term (1000 hr) aging at temperatures in the range 700 to 1025 C. In contrast, aging embrittlement did occur in the Cb-752 alloy after similar aging at 900 C. A critical combination of the solute additions W and Zr in Cb-752 led to Zr segregation at grain boundaries during long-term aging. This segregation subsequently resulted in embrittlement as indicated by an increase in the ductile-brittle transition temperature from below -1960 C to about -150 C

    Intermetallic and ceramic matrix composites for 815 to 1370 C (1500 to 2500 F) gas turbine engine applications

    Get PDF
    Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials
    corecore