109 research outputs found
Recolonization of Raoul Island by Kermadec red-crowned parakeets Cyanoramphus novaezelandiae cyanurus after eradication of invasive predators, Kermadec Islands archipelago, New Zealand
The Kermadec red-crowned parakeet Cyanoramphus novaezelandiae was driven to extinction on Raoul Island over 150 years ago by introduced cats Felis catus and rats (Rattus norvegicus and R. exulans). These predators were eradicated from the island (2,938 ha) between 2002-04 during the world’s largest multispecies eradication project. In 2008 we documented a unique recolonisation event when parakeets were observed to have returned to Raoul, presumably from a nearby island group, The Herald Islets (51 ha). We captured and aged 100 parakeets, of which 44% were born in 2008, and breeding was observed on Raoul Island. This represents the first evidence of nesting of this species on Raoul Island since 1836. Our findings highlight the global conservation potential for island avifaunas by prioritising eradication areas through consideration of proximity of remnant populations to target management locations, instead of the classical translocation approach alone. The natural recolonization of parakeets on Raoul Island from a satellite source population is to our knowledge, a first for parrot conservation and the first documented population expansion and island recolonization of a parrot species after removal of invasive predators
Morphology of the recently re-classified Tasman masked booby (Sula dactylatra tasmani) breeding on the Kermadec Islands
Once thought to be extinct, the Tasman Booby Sula tasmani has recently been re-classified as a subspecies of the Masked Booby S. dactylatra on the basis of genetic data. This re-classification raises the issue of whether this novel clade has a distinct morphology. Morphological differences in size, as well as coloration of integuments, bill and iris have been found in other subspecies of the Masked Booby but have not yet been reported for live Kermadec Islands breeding individuals. Museum specimens from this breeding location have been separated from other Pacific breeding subspecies by their longer wings. We sampled a total of 21 individuals from North Meyer Islet, Kermadec Group, New
Zealand, and applied molecular sexing to obtain sex-specific morphometric measurements. We matched dimorphism in vocalization with genetic sexing results and photographic documentation of human-assessed bill, foot and eye coloration. While culmen measurements were consistent with reports from museum specimens, wing chords from living specimens of Tasman Masked Boobies were 3% and 4% larger in males and females, respectively. Females had larger culmens and wings than males, consistent with the low extent of sexual dimorphism reported from museum skins. Adult Tasman Masked Boobies had yellow to buff-yellow feet, while fledglings, as in most sulids, had grey
to greyish-yellow feet. Our findings confirm the distinctively long wing and particular iris coloration previously reported for the taxon and provide the first description of integument coloration of live specimens. This study highlights the importance of including in situ assessment in taxon descriptions
Transcriptome, biochemical and growth responses of the marine phytoplankter Phaeodactylum tricornutum Bohlin (Bacillariophyta) to copepod grazer presence
Background/Aims: As a model organism for a pleiomorphic marine planktonic primary producer, Phaeodactylum tricornutum has been studied on a molecular level under diverse cultural conditions. But little is known about its morphological, nutritional or transcriptomic responses under grazing stress. Methods: To assess microalgal molecular and cellular responses to grazer presence, we conducted transcriptome profiling in combination with growth rate, biovolume, fatty acid content, carbon and nitrogen content measurements in the model diatom Phaeodactylum tricornutum. RNA-sequencing was used to evaluate the transcriptomic response to grazing stress for P. tricornutum strain CCAP 1055/1. Results: Among the differentially expressed genes, we found down-regulation of genes involved in pathogen resistance, and in fatty acid biosynthesis pathways, while mitosis-involved genes were up-regulated. Experimentally testing morphological and biochemical responses in five strains of the species, we detected strain-specific significant effects of simulated grazing pressure in altered growth rates, biovolume and nutritional composition. Conclusion: Our research reveals the associated molecular and cellular responses to grazing effects in P. tricornutum and extends the understanding of co-evolutionary roles in regulating grazing defence between P. tricornutum and its grazer
Ocean-related global change alters lipid biomarker production in common marine phytoplankton
Lipids, in their function as trophic markers in food webs and organic matter source indicators in the water column and sediments, provide a tool for reconstructing the complexity of global change effects on aquatic ecosystems. It remains unclear how ongoing changes in multiple environmental drivers affect the production of key lipid biomarkers in marine phytoplankton. Here, we tested the responses of sterols, alkenones and fatty acids (FAs) in the diatom Phaeodactylum tricornutum, the cryptophyte Rhodomonas sp. and the haptophyte Emiliania huxleyi under a full-factorial combination of three temperatures (12, 18 and 24 ∘C), three N : P supply ratios (molar ratios 10 : 1, 24 : 1 and 63 : 1) and two pCO2 levels (560 and 2400 µatm) in semicontinuous culturing experiments. Overall, N and P deficiency had a stronger effect on per-cell contents of sterols, alkenones and FAs than warming and enhanced pCO2. Specifically, P deficiency caused an overall increase in biomarker production in most cases, while N deficiency, warming and high pCO2 caused nonsystematic changes. Under future ocean scenarios, we predict an overall decrease in carbon-normalized contents of sterols and polyunsaturated fatty acids (PUFAs) in E. huxleyi and P. tricornutum and a decrease in sterols but an increase in PUFAs in Rhodomonas sp. Variable contents of lipid biomarkers indicate a diverse carbon allocation between marine phytoplankton species in response to changing environments. Thus, it is necessary to consider the changes in key lipids and their consequences for food-web dynamics and biogeochemical cycles, when predicting the influence of global change on marine ecosystems
Brood patch and sex-ratio observations indicate breeding provenance and timing in New Zealand storm petrel (Fregetta maoriana)
We used measurements of brood patch and moult status to estimate the breeding phenology of New Zealand Storm-Petrel, using birds caught at sea within the Hauraki Gulf Marine Park near Auckland, New Zealand. Birds caught October–January had completely downy brood patches, whereas birds caught February–April had bare brood patches with an observed male bias in the February sex-ratio, consistent with a female pre-laying exodus typical of petrels and with the existence of an unknown colony in the region. No birds captured exhibited primary moult, which is known to occur in storm-petrels during their non-breeding season. Our data support the conclusion that the New Zealand storm-petrel breeds during January–June in northern New Zealand and that field surveys for the species on offshore islands in this region during this period are warrante
Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes
Climate-driven changes in environmental conditions have significant and complex effects on marine ecosystems. Variability in phytoplankton elements and biochemicals can be important for global ocean biogeochemistry and ecological functions, while there is currently limited understanding on how elements and biochemicals respond to the changing environments in key coccolithophore species such as Emiliania huxleyi. We investigated responses of elemental stoichiometry and fatty acids (FAs) in a strain of E. huxleyi under three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10:1, 24:1 and 63:1) and two pCO2 levels (560 and 2400 µatm). Overall, C : N : P stoichiometry showed the most pronounced response to N : P supply ratios, with high ratios of particulate organic carbon vs. particulate organic nitrogen (POC : PON) and low ratios of PON vs. particulate organic phosphorus (PON : POP) in low-N media, and high POC : POP and PON : POP in low-P media. The ratio of particulate inorganic carbon vs. POC (PIC : POC) and polyunsaturated fatty acid proportions strongly responded to temperature and pCO2, both being lower under high pCO2 and higher with warming. We observed synergistic interactions between warming and nutrient deficiency (and high pCO2) on elemental cellular contents and docosahexaenoic acid (DHA) proportion in most cases, indicating the enhanced effect of warming under nutrient deficiency (and high pCO2). Our results suggest differential sensitivity of elements and FAs to the changes in temperature, nutrient availability and pCO2 in E. huxleyi, which is to some extent unique compared to non-calcifying algal classes. Thus, simultaneous changes of elements and FAs should be considered when predicting future roles of E. huxleyi in the biotic-mediated connection between biogeochemical cycles, ecological functions and climate change
Evaluating on-land capture methods for monitoring a recently rediscovered seabird, the New Zealand Storm-Petrel Fregetta maoriana
We provide a first assessment of various on-land capture methods for a procellarid seabird, the New Zealand Storm-Petrel Fregetta maoriana, which had been presumed extinct but for which a breeding site has just been discovered on Little Barrier Island. In the vicinity of an active breeding site, playback only, also involving a newly isolated call from in situ deployed sound-recording devices, could efficiently be employed for capture, while light attraction in combination with playback achieved comparable capture success further afield. We consider that these findings can be relevant for breeding ground searches and capture operations in other storm-petrel species, and more generally in seabirds that visit their breeding sites at night
- …