493 research outputs found

    Exchange anisotropy pinning of a standing spin wave mode

    Full text link
    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin wave thickness mode in Ni(80)Fe(20)/Ir(25)Mn(75) exchange biased bilayers was studied for a range of IrMn thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique `fingerprint' of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet/antiferromagnet interface anisotropy. Thermal effects are studied for ultra-thin antiferromagnetic Ir(25)Mn(75) thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.Comment: 7 pages, 7 figure

    Focus on artificial frustrated systems

    Get PDF
    Frustration in physics is the inability of a system to simultaneously satisfy all the competing pairwise interactions within it. The past decade has seen an explosion of activity involving engineering frustration in artificial systems built using nanotechnology. The most common are the artificial spin ices that comprise arrays of nanomagnets with competing magnetostatic interactions. As well as being physical embodiments of idealized statistical mechanical models in which properties can be tuned by design, artificial spin ices can be studied using magnetic microscopy, allowing all the details of the microstates of these systems to be interrogated, both in equilibrium and when perturbed away from it. This 'focus on' collection brings together reports on the latest results from leading groups around the globe in this fascinating and fast-moving field

    Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature

    Full text link
    The field-driven reorientation transition of an anisotropic ferromagnetic monolayer is studied within the context of a finite-temperature Green's function theory. The equilibrium state and the field dependence of the magnon energy gap E0E_0 are calculated for static magnetic field HH applied in plane along an easy or a hard axis. In the latter case, the in-plane reorientation of the magnetization is shown to be continuous at T=0, in agreement with free spin wave theory, and discontinuous at finite temperature T>0T>0, in contrast with the prediction of mean field theory. The discontinuity in the orientation angle creates a jump in the magnon energy gap, and it is the reason why, for T>0T>0, the energy does not go to zero at the reorientation field. Above the Curie temperature TCT_C, the magnon energy gap E0(H)E_0(H) vanishes for H=0 both in the easy and in the hard case. As HH is increased, the gap is found to increase almost linearly with HH, but with different slopes depending on the field orientation. In particular, the slope is smaller when HH is along the hard axis. Such a magnetic anisotropy of the spin-wave energies is shown to persist well above TCT_C (T1.2TCT \approx 1.2 T_C).Comment: Final version accepted for publication in Physical Review B (with three figures

    Theoretical simulation of the anisotropic phases of antiferromagnetic thin films

    Get PDF
    We simulate antiferromagnetic thin films. Dipole-dipole and antiferromagnetic exchange interactions as well as uniaxial and quadrupolar anisotropies are taken into account. Various phases unfold as the corresponding parameters, J, D and C, as well as the temperature T and the number n of film layers vary. We find (1) how the strength Delta_m of the anisotropy arising from dipole-dipole interactions varies with the number of layers m away from the film's surface, with J and with n; (2) a unified phase diagram for all n-layer films and bulk systems; (3) a layer dependent spin reorientation (SR) phase in which spins rotate continuously as T, D, C and n vary; (4) that the ratio of the SR to the ordering temperature depends (approximately) on n only through (D+Delta/n)/C, and hardly on J; (5) a phase transformation between two different magnetic orderings, in which spin orientations may or may not change, for some values of J, by varying n.Comment: 10 LaTeX pages, 13 eps figures. Submitted to PRB on 30 June 2006. Accepted on 10 October 200

    Surface Aided Polarization Reversal In Small Ferroelectric Particles.

    Get PDF
    Polarization reversal in ferroelectric particles driven by a pulsed electric field is examined theoretically using Landau-Devonshire-Khalatnikov theory. A significant reduction in reversal times is shown to be possible if certain surface properties and size criteria are met. The surface properties are also shown to control the magnitude of the applied field needed for irreversible switching. An interesting signature of surface effects is found in the switching current. The theory predicts that the switching current for small ferroelectric particles can exhibit double peaks as a function of time. The size and relative times of the peaks provide specific information on the magnitude and rate of surface reversal dynamics

    Coupled ferro-antiferromagnetic Heisenberg bilayers investigated by many-body Green's function theory

    Full text link
    A theory of coupled ferro- and antiferromagnetic Heisenberg layers is developed within the framework of many-body Green's function theory (GFT) that allows non-collinear magnetic arrangements by introducing sublattice structures. As an example, the coupled ferro- antiferromagnetic (FM-AFM) bilayer is investigated. We compare the results with those of bilayers with purely ferromagnetic or antiferromagnetic couplings. In each case we also show the corresponding results of mean field theory (MFT), in which magnon excitations are completely neglected. There are significant differences between GFT and MFT. A remarkable finding is that for the coupled FM-AFM bilayer the critical temperature decreases with increasing interlayer coupling strength for a simple cubic lattice, whereas the opposite is true for an fcc lattice as well as for MFT for both lattice types.Comment: 17 pages, 6 figures, accepted for publication in J. Phys. Condens. Matter, missing fig.5 adde

    Spin-wave propagation in a microstructured magnonic crystal

    Full text link
    Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatially-resolved Brillouin light scattering microscopy. A rejection frequency band was clearly observed. The band gap frequency was controlled by the applied magnetic field. The measured spin-wave intensity as a function of frequency and propagation distance is in good agreement with a model calculation.Comment: 4 pages, 3 figure

    Probing the interface magnetism in the FeMn/NiFe exchange bias system using magnetic second harmonic generation

    Full text link
    Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments, sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn bilayer in which areas with different exchange bias fields were prepared using 5 KeV He ion irradiation. Both reversible and irreversible uncompensated spins are found in the antiferromagnetic layer close to the interface with the ferromagnetic layer. The SHMOKE hysteresis loop shows the same exchange bias field as obtained from standard magnetometry. We demonstrate that the exchange bias effect is controlled by pinned uncompensated spins in the antiferromagnetic layer.Comment: submitted to Phys. Rev. Let
    corecore