3,978 research outputs found

    Preparation of (Pb,Ba)TiO3 powders and highly oriented thin films by a sol-gel process

    Get PDF
    Solid solution Pb1-xBaxTiO3, with particular emphasis on Pb0.5Ba0.5TiO3, was prepared using a sol-gel process incorporating lead acetate trihydrate, barium acetate, and titanium isopropoxide as precursors, acetylacetone (2,4 pentanedione) as a chelating agent, and ethylene glycol as a solvent. The synthesis procedure was optimized by systematically varying acetylacetone: Ti and H2O:Ti molar ratios and calcination temperature. The resulting effects on sol and powder properties were studied using thermogravimetric analysis/differential scanning calorimetry, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and x-ray diffraction (XRD). Crystallization of the perovskite structure occurred at a temperature as low as 450 °C. Thin films were prepared by spin coating on (100) MgO. Pyrolysis temperature and heating rate were varied, and the resultant film properties investigated using field-emission scanning electron microscopy, atomic force microscopy, and XRD. Under optimized conditions, highly oriented films were obtained at a crystallization temperature of 600 °C

    The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit

    Full text link
    Gravitomagnetism--a motional coupling of matter analogous to the Lorentz force in electromagnetism--has observable consequences for any scenario involving differing mass currents. Examples include gyroscopes located near a rotating massive body, and the interaction of two orbiting bodies. In the former case, the resulting precession of the gyroscope is often called ``frame dragging,'' and is the principal measurement sought by the Gravity Probe-B experiment. The latter case is realized in the earth-moon system, and the effect has in fact been confirmed via lunar laser ranging (LLR) to approximately 0.1% accuracy--better than the anticipated accuracy of the Gravity-Probe-B result. This paper shows the connnection between these seemingly disparate phenomena by employing the same gravitomagnetic term in the equation of motion to obtain both gyroscopic precession and modification of the lunar orbit. Since lunar ranging currently provides a part in a thousand fit to the gravitomagnetic contributions to the lunar orbit, this feature of post-Newtonian gravity is not adjustable to fit any anomalous result beyond the 0.1% level from Gravity Probe-B without disturbing the existing fit of theory to the 36 years of LLR data.Comment: 4 pages; accepted for publication in Physical Review Letter

    Potential formulation of the dispersion relation for a uniform, magnetized plasma with stationary ions in terms of a vector phasor

    Full text link
    The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Only at low conductivity and below the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.Comment: 10 pages, 6 figures, major revision, final version, to appear in Po

    Search for correlation effects in linear chains of trapped ions

    Get PDF
    We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, searching for correlations between the decay times of the different ions. We find no evidence for correlations: the number of quantum jumps with separations of less than 10 ms is consistent with statistics to within errors of 0.05%; the lifetime of the metastable level derived from the data is consistent with that derived from independent single-ion data at the level of the experimental errors 1%; and no rank correlations between the decay times were found with sensitivity to rank correlation coefficients at the level of |R| = 0.024.Comment: With changes to introduction. 5 pages, including 4 figures. Submitted to Europhys. Let

    Stressed detector arrays for airborne astronomy

    Get PDF
    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realization of a quantum fully homomorphic encryption scheme. To demonstrate the versatility of a a quantum fully homomorphic encryption scheme, we further present a toy two-party secure computation task enabled by our scheme

    Exchange Bias Induced by the Fe3O4 Verwey transition

    Full text link
    We present a study of the exchange bias in different configurations of V2O3 thin films with ferromagnetic layers. The exchange bias is accompanied by a large vertical shift in the magnetization. These effects are only observed when V2O3 is grown on top of Ni80Fe20 permalloy. The magnitude of the vertical shift is as large as 60% of the total magnetization which has never been reported in any system. X-Ray diffraction studies show that the growth conditions promote the formation of a ferrimagnetic Fe3O4 interlayer. The change in the easy magnetization axis of Fe3O4 across the Verwey transition at 120 K is correlated with the appearance of exchange bias and vertical shift in magnetization. Both phenomena disappear above 120 K, indicating for the first time a direct relationship between the magnetic signature of the Verwey transition and exchange bias.Comment: Accepted for publication Physical Review

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties, while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use-cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realisation of a quantum fully homomorphic encryption scheme. We further present a toy two-party secure computation task enabled by our scheme. Finally, as part of our implementation, we also demonstrate a post-selective two-qubit linear optical controlled-phase gate with a much higher post-selection success probability (1/2) when compared to alternate implementations, e.g. with post-selective controlled-ZZ or controlled-XX gates (1/9).Comment: 11 pages, 16 figures, 2 table
    corecore