39 research outputs found

    Stereospecific modulation of GABA(A) receptor function by urocanic acid isomers

    Get PDF
    A deamination product of histidine, urocanic acid, accumulates in the skin of mammals as trans-urocanic acid. Ultraviolet (UV) irradition converts it to the cis-isomer that is an important mediator in UV-induced immunosuppression. We have recently shown that urocanic acid interferes with the agonist binding to GABAA receptors. We now report that the effects of urocanic acid on binding of a convulsant ligand (t-butylbicyclo[35S]phosphorothionate) to GABAA receptors in brain membrane homogenates are dependent on pH of the incubation medium, the agonistic actions being enhanced at the normal pH of the skin (5.5). Using Xenopus laevis oocytes expressing recombinant rat alpha1beta1gamma2S GABAA receptors, the low pH potentiated the direct agonistic action of trans-urocanic acid under two-electrode voltage-clamp, whereas cis-urocanic acid retained its low efficacy both at pH 5.5 and 7.4. The results thus indicate clear differences between urocanic acid isomers in functional activity at one putative receptor site of immunosuppression, the GABAA receptor, the presence of which in the skin remains to be demonstrated.</p

    Stemness of the Organ of Corti Relates to the Epigenetic Status of Sox2 Enhancers

    Get PDF
    In the adult mammalian auditory epithelium, the organ of Corti, loss of sensory hair cells results in permanent hearing loss. The underlying cause for the lack of regenerative response is the depletion of otic progenitors in the cell pool of the sensory epithelium. Here, we show that an increase in the sequence-specific methylation of the otic Sox2 enhancers NOP1 and NOP2 is correlated with a reduced self-renewal potential in vivo and in vitro; additionally, the degree of methylation of NOP1 and NOP2 is correlated with the dedifferentiation potential of postmitotic supporting cells into otic stem cells. Thus, the stemness the organ of Corti is related to the epigenetic status of the otic Sox2 enhancers. These observations validate the continued exploration of treatment strategies for dedifferentiating or reprogramming of differentiated supporting cells into progenitors to regenerate the damaged organ of Corti

    Investigation of Gamma-aminobutyric acid (GABA) A receptors genes and migraine susceptibility

    Get PDF
    Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ), which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE) and type θ (GABRQ) genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls) examining a set of 3 single nucleotide polymorphisms (SNPs) in the coding region (exons 3, 5 and 9) of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05). Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility

    Early Evolution of Ionotropic GABA Receptors and Selective Regimes Acting on the Mammalian-Specific Theta and Epsilon Subunits

    Get PDF
    BACKGROUND: The amino acid neurotransmitter GABA is abundant in the central nervous system (CNS) of both invertebrates and vertebrates. Receptors of this neurotransmitter play a key role in important processes such as learning and memory. Yet, little is known about the mode and tempo of evolution of the receptors of this neurotransmitter. Here, we investigate the phylogenetic relationships of GABA receptor subunits across the chordates and detail their mode of evolution among mammals. PRINCIPAL FINDINGS: Our analyses support two major monophyletic clades: one clade containing GABA(A) receptor alpha, gamma, and epsilon subunits, and another one containing GABA(A) receptor rho, beta, delta, theta, and pi subunits. The presence of GABA receptor subunits from each of the major clades in the Ciona intestinalis genome suggests that these ancestral duplication events occurred before the divergence of urochordates. However, while gene divergence proceeded at similar rates on most receptor subunits, we show that the mammalian-specific subunits theta and epsilon experienced an episode of positive selection and of relaxed constraints, respectively, after the duplication event. Sites putatively under positive selection are placed on a three-dimensional model obtained by homology-modeling. CONCLUSIONS: Our results suggest an early divergence of the GABA receptor subunits, before the split from urochordates. We show that functional changes occurred in the lineages leading to the mammalian-specific subunit theta, and we identify the amino acid sites putatively responsible for the functional divergence. We discuss potential consequences for the evolution of mammals and of their CNS

    GABA Receptors and the Pharmacology of Sleep

    Get PDF
    Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia

    Inner Ear Stem Cells

    No full text

    Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor gamma2 subunit.

    No full text
    Agonists of the allosteric benzodiazepine site of GABAA receptors bind at the interface of the alpha and gamma subunits. Here, we tested the in vivo contribution of the gamma2 subunit to the actions of zolpidem, an alpha1 subunit selective benzodiazepine agonist, by generating mice with a phenylalanine (F) to isoleucine (I) substitution at position 77 in the gamma2 subunit. The gamma2F77I mutation has no major effect on the expression of GABAA receptor subunits in the cerebellum. The potency of zolpidem, but not that of flurazepam, for the inhibition of [3H]flunitrazepam binding to cerebellar membranes is greatly reduced in gamma2I77/I77 mice. Zolpidem (1 microM) increased both the amplitude and decay of miniature inhibitory postsynaptic currents (mIPSCs) in Purkinje cells of control C57BL/6 (34% and 92%, respectively) and gamma2F77/F77 (20% and 84%) mice, but not in those of gamma2F77I mice. Zolpidem tartrate had no effect on exploratory activity (staircase test) or motor performance (rotarod test) in gamma2I77/I77 mice at doses up to 30 mg/kg (i.p.) that strongly sedated or impaired the control mice. Flurazepam was equally effective in enhancing mIPSCs and disrupting performance in the rotarod test in control and gamma2I77/I77 mice. These results show that the effect of zolpidem, but not flurazepam, is selectively eliminated in the brain by the gamma2F77I point mutation
    corecore