4 research outputs found

    Species-specific use of allochthonous resources by ground beetles (Carabidae) at a river-land interface

    Get PDF
    A variety of organisms mediate river-terrestrial linkages through spatial subsidies. However, most empirical studies have classified organisms rather broadly (e.g., by functional group or taxonomic family) and have dismissed species-level linkages at the interface of ecosystems. Here, we show how allochthonous resource use varies among taxonomically similar species of ground beetles (family Carabidae) across seasons (June-September). We investigated seasonal shifts in the distribution of five beetle species and their dietary responses to spatial subsidies (emerging aquatic insects) in a Japanese braided river. Despite their taxonomic closeness, the ground beetles showed species-specific responses to spatial subsidies, and beetle distribution patterns tended to coincide with their diets. Overall, 1-56% of ground beetle diets were derived from aquatic prey. One genus (Bembidion spp.) mainly consumed aquatic prey, while three species fed primarily on terrestrial prey across all seasons. However, one species (Lithochlaenius noguchii) showed shifts in its diet from aquatic to terrestrial prey according to subsidy availability. The observed variation in allochthonous resource use was likely related to species-specific foraging modes, physiological tolerance to dry conditions, and interspecific competition. Our findings suggest that considering species-specific interactions is necessary to fully understand cross-system interactions and recipient food-web dynamics

    Effects of rapid evolution on population cycles and extinction in predator–prey systems

    No full text
    Traditionally ecologists have tended to consider species as the smallest unit for understanding community dynamics. However, recent studies demonstrated that there is substantial amount of intraspecific genetic variation and the resultant microevolution can affect ecological dynamics. Here I introduce recent studies showing how adaptive phenotypic changes affect community dynamics, especially in predator–prey systems. First, I review the effects of rapid evolution on predator–prey cycles. Experimental and theoretical studies have demonstrated that the phase lag between predator and prey densities can be changed from the classic quarter to the half (“antiphase cycles”) or three-quarters (“clockwise cycles”) by prey defense evolution or coevolution, respectively. In addition, prey defense evolution can cause “cryptic cycles” where predator densities fluctuate whereas prey densities stay almost constant. Second, I explain how rapid adaptive evolution can prevent extinction (“evolutionary rescue”). Evolutionary rescue with interspecific interactions can create counterintuitive dynamics and will be important for understanding species coexistence in communities. Finally, I discuss future perspectives of empirical and theoretical studies on eco-evolutionary dynamics in complex communities
    corecore