13,805 research outputs found

    Decentralized collaborative transport of fabrics using micro-UAVs

    Full text link
    Small unmanned aerial vehicles (UAVs) have generally little capacity to carry payloads. Through collaboration, the UAVs can increase their joint payload capacity and carry more significant loads. For maximum flexibility to dynamic and unstructured environments and task demands, we propose a fully decentralized control infrastructure based on a swarm-specific scripting language, Buzz. In this paper, we describe the control infrastructure and use it to compare two algorithms for collaborative transport: field potentials and spring-damper. We test the performance of our approach with a fleet of micro-UAVs, demonstrating the potential of decentralized control for collaborative transport.Comment: Submitted to 2019 International Conference on Robotics and Automation (ICRA). 6 page

    Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers

    Full text link
    Backward stimulated Raman scattering in gases provides a promising route to compression and amplification of a Stokes seed-pulse by counter-propagating against a pump-pulse, as has been already demonstrated in various platforms, mainly in free-space. However, the dynamics governing this process when seeded by noise has not yet been investigated in a fully controllable collinear environment. Here we report the first unambiguous observation of efficient noise-seeded backward stimulated Raman scattering in a hydrogen-filled hollow-core photonic crystal fiber. At high gas pressures, when the backward Raman gain is comparable with, but lower than, the forward gain, we report quantum conversion efficiencies exceeding 40% to the backward Stokes at 683 nm from a narrowband 532-nm-pump. The efficiency increases to 65% when the backward process is seeded by a small amount of back-reflected forward-generated Stokes light. At high pump powers the backward Stokes signal, emitted in a clean fundamental mode and spectrally pure, is unexpectedly always stronger than its forward-propagating counterpart. We attribute this striking observation to the unique temporal dynamics of the interacting fields, which cause the Raman coherence (which takes the form of a moving fine-period Bragg grating) to grow in strength towards the input end of the fiber. A good understanding of this process, together with the rapid development of novel anti-resonant-guiding hollow-core fibers, may lead to improved designs of efficient gas-based Raman lasers and amplifiers operating at wavelengths from the ultraviolet to the mid-infrared.Comment: 6 pages and 8 figures in the main section. 4 pages and 5 figures in the supplementary sectio

    Rescue, rehabilitation, and release of marine mammals: An analysis of current views and practices.

    Get PDF
    Stranded marine mammals have long attracted public attention. Those that wash up dead are, for all their value to science, seldom seen by the public as more than curiosities. Animals that are sick, injured, orphaned or abandoned ignite a different response. Generally, public sentiment supports any effort to rescue, treat and return them to sea. Institutions displaying marine mammals showed an early interest in live-stranded animals as a source of specimens -- in 1948, Marine Studios in St. Augustine, Florida, rescued a young short-finned pilot whale (Globicephala macrorhynchus), the first ever in captivity (Kritzler 1952). Eventually, the public as well as government agencies looked to these institutions for their recognized expertise in marine mammal care and medicine. More recently, facilities have been established for the sole purpose of rehabilitating marine mammals and preparing them for return to the wild. Four such institutions are the Marine Mammal Center (Sausalito, CA), the Research Institute for Nature Management (Pieterburen, The Netherlands), the RSPCA, Norfolk Wildlife Hospital (Norfolk, United Kingdom) and the Institute for Wildlife Biology of Christian-Albrects University (Kiel, Germany).(PDF contains 68 pages.

    F as in Fat: How Obesity Threatens America's Future 2011

    Get PDF
    Outlines 2008-10 national and state obesity rates, health indicators, and policies to address the epidemic; regional, economic, and social barriers to healthy choices; impact of the 2010 healthcare reform and Let's Move initiative; and recommendations

    Transformation Optics with Photonic Band Gap Media

    Full text link
    We introduce a class of optical media based on adiabatically modulated, dielectric-only, and potentially extremely low-loss, photonic crystals. The media we describe represent a generalization of the eikonal limit of transformation optics (TO). The foundation of the concept is the possibility to fit frequency isosurfaces in the k-space of photonic crystals with elliptic surfaces, allowing them to mimic the dispersion relation of light in anisotropic effective media. Photonic crystal cloaks and other TO devices operating at visible wavelengths can be constructed from optically transparent substances like glasses, whose attenuation coefficient can be as small as 10 dB/km, suggesting the TO design methodology can be applied to the development of optical devices not limited by the losses inherent to metal-based, passive metamaterials.Comment: 4 pages, 4 figure

    The short and long of it: neural correlates of temporal-order memory for autobiographical events

    Get PDF
    Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events
    corecore