5 research outputs found

    Optimal design of an autothermal membrane reactor coupling the dehydrogenation of ethylbenzene to styrene with the hydrogenation of nitrobenzene to aniline

    No full text
    Coupling the dehydrogenation of ethylbenzene to styrene with the hydrogenation of nitrobenzene to aniline in a catalytic fixed bed membrane reactor has the potential for significantly improving both processes (Abo-Ghander et al., 2008. Modeling of a novel membrane reactor to integrate dehydrogenation of ethylbenzene to styrene with hydrogenation of nitrobenzene to aniline. Chemical Engineering Science, 63 (7), 1817-1826). In a continuing effort to realize this potential, an optimal design is sought for a co-current coupled flow, catalytic membrane reactor configuration. To achieve this objective, two conflicting objective functions, namely: the yield of styrene on the dehydrogenation side and the conversion of nitrobenzene on the hydrogenation side, are considered. The total number of the decision variables considered in the optimization problem is 12, representing a set of operating and dimensional parameters. The problem is solved numerically by two deterministic multi-objective optimization approaches: the normalized normal constraint method and the normal boundary intersection method. It was found that the integrated reactor system can be operated to produce a maximum styrene yield of 97% when production of styrene is emphasized and, on the other hand, up to 80% of nitrobenzene conversion when nitrobenzene conversion is concentrated on. The resulting sets of Pareto optimal solutions obtained by both techniques are shown to be identical. Qualitative explanations are provided for the effect of the decision variables on both objectives. © 2010 Elsevier Ltd. All rights reserved.[**]status: publishe

    Comparison of diffusion models in the modelling of a catalytic membrane fixed bed reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene

    No full text
    Coupling of dehydrogenation of ethylbezene with hydrogenation of nitrobenzene in a catalytic membrane reactor can lead to a significant improvement in the conversion of ethylbenzene and production of styrene. In this work, the homogeneous reactor model for a cocurrent flow configuration is compared to two heterogeneous models based on the Fickian diffusion model and the dusty gas model for both isothermal and non-isothermal pellets. It is observed that both heterogeneous models predict a significant drop in yield and conversion compared to the homogeneous model, indicating the importance of heterogeneity. This drop is generally less severe for the dusty gas model than for the Fickian diffusion model. The assumption of isothermality causes larger deviations than the assumption of Fickian diffusion. The deviations in the predictions of the homogenous model and the heterogeneous models from those of the dusty gas model for non-isothermal pellets are ∼6% and ∼11%, respectively. © 2011 Elsevier Ltd.status: publishe
    corecore