3,916 research outputs found

    Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: Malign bodyguard?

    Get PDF
    On January 30, 2020, the World Health Organization identified SARS-CoV-2 as a public health emergency of global concern. Accordingly, the demand for personal protective equipment (PPE), including medical face masks, has sharply risen compared with 2019. The new situation has led to a sharp increase in energy demand and the environmental impacts associated with these product systems. Hence, the pandemic's effects on the environmental consequences of various PPE types, such as medical face masks, should be assessed. In light of that, the current study aimed to identify the environmental hot-spots of medical face mask production and consumption by using life cycle assessment (LCA) and tried to provide solutions to mitigate the adverse impacts. Based on the results obtained, in 2020, medical face masks production using fossil-based plastics causes the loss of 2.03 × 103 disability-adjusted life years (DALYs); 1.63 × 108 PDF*m2*yr damage to ecosystem quality; the climate-damaging release of 2.13 × 109 kg CO2eq; and 5.65 × 1010 MJ damage to resources. Besides, annual medical face mask production results in 5.88 × 104 TJ demand for exergy. On the other hand, if used makes are not appropriately handled, they can lead to 4.99 × 105 Pt/yr additional damage to the environment in 2020 as determined by the EDIP 2003. Replacement of fossil-based plastics with bio-based plastics, at rates ranging from 10 to 100%, could mitigate the product's total yearly environmental damage by 4–43%, respectively. Our study calls attention to the environmental sustainability of PPE used to prevent virus transmission in the current and future pandemics

    Holographic Entanglement Entropy in P-wave Superconductor Phase Transition

    Full text link
    We investigate the behavior of entanglement entropy across the holographic p-wave superconductor phase transition in an Einstein-Yang-Mills theory with a negative cosmological constant. The holographic entanglement entropy is calculated for a strip geometry at AdS boundary. It is found that the entanglement entropy undergoes a dramatic change as we tune the ratio of the gravitational constant to the Yang-Mills coupling, and that the entanglement entropy does behave as the thermal entropy of the background black holes. That is, the entanglement entropy will show the feature of the second order or first order phase transition when the ratio is changed. It indicates that the entanglement entropy is a good probe to investigate the properties of the holographic phase transition.Comment: 19 pages,15 figures, extended discussion in Sec.5, references adde

    Hydrodynamics of a 5D Einstein-dilaton black hole solution and the corresponding BPS state

    Full text link
    We apply the potential reconstruction approach to generate a series of asymptotically AdS (aAdS) black hole solutions, with a self-interacting bulk scalar field. Based on the method, we reproduce the pure AdS solution as a consistency check and we also generate a simple analytic 5D black hole solution. We then study various aspects of this solution, such as temperature, entropy density and conserved charges. Furthermore, we study the hydrodynamics of this black hole solution in the framework of fluid/gravity duality, e.g. the ratio of the shear viscosity to the entropy density. In a degenerate case of the 5D black hole solution, we find that the c function decreases monotonically from UV to IR as expected. Finally, we investigate the stability of the degenerate solution by studying the bosonic functional energy of the gravity and the Witten-Nester energy EWNE_{WN}. We confirm that the degenerate solution is a BPS domain wall solution. The corresponding superpotential and the solution of the killing spinor equation are found explicitly.Comment: V2: 23 pages, no figure, minor changes, typos corrected, new references and comments added, version accepted by JHE

    Hidden Conformal Symmetry of the Reissner-Nordstr{\o}m Black Holes

    Full text link
    Motivated by recent progresses in the holographic descriptions of the Kerr and Reissner-Nordstr{\o}m (RN) black holes, we explore the hidden conformal symmetry of nonextremal uplifted 5D RN black hole by studying the near horizon wave equation of a massless scalar field propagating in this background. Similar to the Kerr black hole case, this hidden symmetry is broken by the periodicity of the associated angle coordinate in the background geometry, but the results somehow testify the dual CFT description of the nonextremal RN black holes. The duality is further supported by matching of the entropies and absorption cross sections calculated from both CFT and gravity sides.Comment: 14 pages, no figur

    Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes

    Full text link
    We consider the AdS3/CFT2\mathrm{AdS}_3/\mathrm{CFT}_2 description of Reissner-Nordstr{\o}m black holes by studying their uplifted counterparts in five dimensions. Assuming a natural size of the extra dimension, the near horizon geometries for the extremal limit are exactly AdS3×S2\mathrm{AdS}_3 \times \mathrm{S}^2. We compute the scattering amplitude of a scalar field, with a mode near threshold of frequency and extra dimensional momentum, by a near extremal uplifted black hole. The absorption cross section agrees with the two point function of the CFT dual to the scalar field.Comment: reference added, improper statements corrected, 17 pages, no figure

    Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer

    Get PDF
    Topoisomerase IIb binding protein 1 (TopBP1) is involved in cell survival, DNA replication, DNA damage repair and cell cycle checkpoint control. The biological function of TopBP1 and its close relation with BRCA1 prompted us to investigate whether alterations in the TopBP1 gene can influence the risk of breast cancer. The aim of this study was to examine the association between five polymorphisms (rs185903567, rs116645643, rs115160714, rs116195487, and rs112843513) located in the 30UTR region of the TopBP1 gene and breast cancer risk as well as allele-specific gene expression. Five hundred thirty-four breast cancer patients and 556 population controls were genotyped for these SNPs. Allele-specific Top- BP1 mRNA and protein expressions were determined by using real time PCR and western blotting methods, respectively. Only one SNP (rs115160714) showed an association with breast cancer. Compared to homozygous common allele carriers, heterozygous and homozygous for the T variant had significantly increased risk of breast cancer (adjusted odds ratio = 3.81, 95 % confidence interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and protein expression were higher in the individuals with the CT or TT genotype. There was a significant association between the rs115160714 and tumor grade and stage. Most carriers of minor allele had a high grade (G3) tumors classified as T2-T4N1M0. Our study raises a possibility that a genetic variation of TopBP1 may be implicated in the etiology of breast cancer

    The RN/CFT Correspondence Revisited

    Full text link
    We reconsidered the quantum gravity description of the near horizon extremal Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS2_2/CFT1_1 correspondence. We found that, for pure electric case, the right moving central charge of dual 1D CFT is 6Q26 Q^2 which is different from the previous result 6Q36 Q^3 of left moving sector obtained by warped AdS3_3/CFT2_2 description. We discussed the discrepancy in these two approaches and examined novel properties of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Linear Confinement for Mesons and Nucleons in AdS/QCD

    Full text link
    By using a new parametrization of the dilaton field and including a cubic term in the bulk scalar potential, we realize linear confinement in both meson and nucleon sectors within the framework of soft-wall AdS/QCD. At the same time this model also correctly incorporate chiral symmetry breaking. We compare our resulting mass spectra with experimental data and find good agreement between them.Comment: 14 pages, published version in JHE
    corecore