108 research outputs found

    A child presenting with acute renal failure secondary to a high dose of indomethacin: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute renal failure caused by nonsteroidal anti-inflammatory drugs administered at therapeutic doses is generally mild, non-anuric and transitory. There are no publications on indomethacin toxicity secondary to high doses in children. The aim of this article is to describe acute renal failure secondary to a high dose of indomethacin in a child and to review an error in a supervised drug prescription and administration system.</p> <p>Case presentation</p> <p>Due to a medication error, a 20-day-old infant in the postoperative period of surgery for Fallot's tetralogy received a dose of 10 mg/kg of indomethacin, 50 to 100 times higher than the therapeutic dose. The child presented with acute, oligo-anuric renal failure requiring treatment with continuous venovenous renal replacement therapy, achieving complete recovery of renal function with no sequelae.</p> <p>Conclusion</p> <p>In order to reduce medication errors in critically ill children, it is necessary to develop a supervised drug prescription and administration system, with controls at various levels.</p

    Influence of antenatal physical exercise on haemodynamics in pregnant women: a flexible randomisation approach

    Get PDF
    Background: Normal pregnancy is associated with marked changes in haemodynamic function, however theinfluence and potential benefits of antenatal physical exercise at different stages of pregnancy and postpartumremain unclear. The aim of this study was therefore to characterise the influence of regular physical exercise onhaemodynamic variables at different stages of pregnancy and also in the postpartum period.Methods: Fifty healthy pregnant women were recruited and randomly assigned (2 × 2 × 2 design) to a land orwater-based exercise group or a control group. Exercising groups attended weekly classes from the 20th week ofpregnancy onwards. Haemodynamic assessments (heart rate, cardiac output, stroke volume, total peripheralresistance, systolic and diastolic blood pressure and end diastolic index) were performed using the Task Forcehaemodynamic monitor at 12–16, 26–28, 34–36 and 12 weeks following birth, during a protocol including posturalmanoeurvres (supine and standing) and light exercise.Results: In response to an acute bout of exercise in the postpartum period, stroke volume and end diastolic indexwere greater in the exercise group than the non-exercising control group (p = 0.041 and p = 0.028 respectively).Total peripheral resistance and diastolic blood pressure were also lower (p = 0.015 and p = 0.007, respectively) in theexercise group. Diastolic blood pressure was lower in the exercise group during the second trimester (p = 0.030).Conclusions: Antenatal exercise does not appear to substantially alter maternal physiology with advancinggestation, speculating that the already vast changes in maternal physiology mask the influences of antenatalexercise, however it does appear to result in an improvement in a woman’s haemodynamic function (enhancedventricular ejection performance and reduced blood pressure) following the end of pregnancy

    Proteomic analysis of urine in medication-overuse headache patients: possible relation with renal damages

    Get PDF
    Medication-overuse headache (MOH) is a chronic disorder associated with overuse of analgesic drugs, triptans, non-steroidal anti-inflammatory drugs (NSAIDs) or other acute headache compounds. Various epidemiologic investigations proved that different drug types could cause nephrotoxicity, particularly in chronic patients. The aim of the present work was to analyze, by a proteomic approach, the urinary protein profiles of MOH patients focusing on daily use of NSAIDs, mixtures and triptans that could reasonably be related to potential renal damage. We selected 43 MOH patients overusing triptans (n = 18), NSAIDs (n = 11), and mixtures (n = 14), for 2–30 years with a mean daily analgesic intake of 1.5 ± 0.9 doses, and a control group composed of 16 healthy volunteers. Urine proteins were analyzed by mono-dimensional gel electrophoresis and identified by mass spectrometry analysis. Comparing the proteomic profiles of patients and controls, we found a significantly different protein expression, especially in the NSAIDs group, in which seven proteins resulted over-secreted from kidney (OR = 49, 95% CI 2.53–948.67 vs. controls; OR = 11.6, 95% CI 0.92–147.57 vs. triptans and mixtures groups). Six of these proteins (uromodulin, α-1-microglobulin, zinc-α-2-glycoprotein, cystatin C, Ig-kappa-chain, and inter-α-trypsin heavy chain H4) were strongly correlated with various forms of kidney disorders. Otherwise, in mixtures and in triptans abusers, only three proteins were potentially associated to pathological conditions (OR = 4.2, 95% CI 0.33–53.12, vs. controls). In conclusion, this preliminary proteomic study allowed us to define the urinary protein pattern of MOH patients that is related to the abused drug. According with the obtained results, we believe that the risk of nephrotoxicity should be considered particularly in MOH patients who abuse of NSAIDs

    Lifetime physical activity and risk of breast cancer in pre-and post-menopausal women

    Get PDF
    © 2015 Springer Science+Business Media New York To investigate the association between different types of physical activity (PA) and breast cancer. A case–control study of breast cancer was conducted in Western Australia from 2009 to 2011, in which 1205 women with breast cancer and 1789 frequency age-matched breast cancer-free control women were recruited. A self-administered questionnaire was used to collect information about lifetime and age-period recreational, household, occupational and transport physical activities. Detailed questions about demographic characteristics, and relevant reproductive, medical and lifestyle factors were also included. Logistic regression and restrictive cubic spline analyses were applied to investigate the association and dose–response relationship between PA and breast cancer risk. Subgroup analysis was performed regarding menopausal status. We found non-linear dose–response associations between PA and risk of breast cancer. Overall, 95–130 MET-hours/week of total lifetime PA was associated with the lowest breast cancer risk. The effects were stronger among post-menopausal women. We also found that the medium amounts of recreational PA (up to 21 MET-hours/week) were associated with lower breast cancer risk among post-menopausal women. Further analysis on the intensity of recreational PA demonstrated different dose–response associations between moderate- and vigorous-intensity recreational PA and breast cancer risk. We found that PA was associated with a reduced risk of breast cancer among post-menopausal women, but not in a linear fashion. Recreational PA of different intensities may have different dose–response associations with risk of breast cancer

    Surprisingly Simple Mechanical Behavior of a Complex Embryonic Tissue

    Get PDF
    Background: Previous studies suggest that mechanical feedback could coordinate morphogenetic events in embryos. Furthermore, embryonic tissues have complex structure and composition and undergo large deformations during morphogenesis. Hence we expect highly non-linear and loading-rate dependent tissue mechanical properties in embryos. Methodology/Principal Findings: We used micro-aspiration to test whether a simple linear viscoelastic model was sufficient to describe the mechanical behavior of gastrula stage Xenopus laevis embryonic tissue in vivo. We tested whether these embryonic tissues change their mechanical properties in response to mechanical stimuli but found no evidence of changes in the viscoelastic properties of the tissue in response to stress or stress application rate. We used this model to test hypotheses about the pattern of force generation during electrically induced tissue contractions. The dependence of contractions on suction pressure was most consistent with apical tension, and was inconsistent with isotropic contraction. Finally, stiffer clutches generated stronger contractions, suggesting that force generation and stiffness may be coupled in the embryo. Conclusions/Significance: The mechanical behavior of a complex, active embryonic tissue can be surprisingly well described by a simple linear viscoelastic model with power law creep compliance, even at high deformations. We found no evidence of mechanical feedback in this system. Together these results show that very simple mechanical models can be useful in describing embryo mechanics. © 2010 von Dassow et al

    Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods

    Get PDF
    Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap
    corecore