9 research outputs found

    Confronting the coral reef crisis

    No full text
    The worldwide decline of coral reefs calls for an urgent reassessment of current management practices. Confronting large-scale crises requires a major scaling-up of management efforts based on an improved understanding of the ecological processes that underlie reef resilience. Managing for improved resilience, incorporating the role of human activity in shaping ecosystems, provides a basis for coping with uncertainty, future changes and ecological surprises. Here we review the ecological roles of critical functional groups (for both corals and reef fishes) that are fundamental to understanding resilience and avoiding phase shifts from coral dominance to less desirable, degraded ecosystems. We identify striking biogeographic differences in the species richness and composition of functional groups, which highlight the vulnerability of Caribbean reef ecosystems. These findings have profound implications for restoration of degraded reefs, management of fisheries, and the focus on marine protected areas and biodiversity hotspots as priorities for conservation

    Light, sediment, temperature, and the early life-history of the habitat-forming alga Cystoseira barbata

    No full text
    Recruitment is essential for the maintenance of populations, but far more is typically known about the more easily-observed adult stages than their smaller, often microscopic early life-history counterparts. This discrepancy can be particularly problematic for populations of foundation species that create biogenic habitat for a multitude of other taxa, but are themselves prime candidates for exploitation, fragmentation, and loss, and therefore become the focus of restoration efforts partly or fully dependent on recruitment. The purpose of this study was to improve ecological understanding for early life-history stages of the habitat-forming marine alga Cystoseira barbata (Stackhouse) C. Agardh (Fucales: Sargassaceae), member of a genus that has experienced considerable fragmentation and population decline on European coasts. Using experimental manipulations of water temperature, light intensity, and sediment accumulation, we observed that sediment virtually precluded recruitment of C. barbata, and greatly impacted the survival of recently settled germlings (up to ~83% mortality). Stronger intensities of light facilitated the growth of germlings, including the capacity for ~50% of them to outgrow detrimental sediment and survive. Temperature (10 vs. 16°C) had no effect on early recruitment, survival, or growth. This information helps to identify likely causes and locations of recruitment failure, and by extension, the conditions needed (either naturally or through human intervention) to facilitate recruitment and possible habitat restoration. Ultimately, this knowledge can increase our capacity to predict population persistence and the likely success of restoration efforts.Andrew D. Irving, David Balata, Francesco Colosio, Guillaume A. Ferrando and Laura Airold

    When is it rational to participate in a clinical trial? A game theory approach incorporating trust, regret and guilt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Randomized controlled trials (RCTs) remain an indispensable form of human experimentation as a vehicle for discovery of new treatments. However, since their inception RCTs have raised ethical concerns. The ethical tension has revolved around “duties to individuals” vs. “societal value” of RCTs. By asking current patients “to sacrifice for the benefit of future patients” we risk subjugating our duties to patients’ best interest to the utilitarian goal for the good of others. This tension creates a key dilemma: when is it rational, from the perspective of the trial patients and researchers (as societal representatives of future patients), to enroll in RCTs?</p> <p>Methods</p> <p>We employed the trust version of the prisoner’s dilemma since interaction between the patient and researcher in the setting of a clinical trial is inherently based on trust. We also took into account that the patient may have regretted his/her decision to participate in the trial, while a researcher may feel guilty because he/she abused the patient’s trust.</p> <p>Results</p> <p>We found that under typical circumstances of clinical research, most patients can be expected not to trust researchers, and most researchers can be expected to abuse the patients’ trust. The most significant factor determining trust was the success of experimental or standard treatments, respectively. The more that a researcher believes the experimental treatment will be successful, the more incentive the researcher has to abuse trust. The analysis was sensitive to the assumptions about the utilities related to success and failure of therapies that are tested in RCTs. By varying all variables in the Monte Carlo analysis we found that, on average, the researcher can be expected to honor a patient’s trust 41% of the time, while the patient is inclined to trust the researcher 69% of the time. Under assumptions of our model, enrollment into RCTs represents a rational strategy that can meet both patients’ and researchers’ interests simultaneously 19% of the time.</p> <p>Conclusions</p> <p>There is an inherent ethical dilemma in the conduct of RCTs. The factors that hamper full co-operation between patients and researchers in the conduct of RCTs can be best addressed by: a) having more reliable estimates on the probabilities that new vs. established treatments will be successful, b) improving transparency in the clinical trial system to ensure fulfillment of “the social contract” between patients and researchers.</p

    Communities and change in the anthropocene: understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures

    Get PDF
    The majority of vulnerability and adaptation scholarship, policies and programs focus exclusively on climate change or global environmental change. Yet, individuals, communities and sectors experience a broad array of multi-scalar and multi-temporal, social, political, economic and environmental changes to which they are vulnerable and must adapt. While extensive theoretical-and increasingly empirical-work suggests the need to explore multiple exposures, a clear conceptual framework which would facilitate analysis of vulnerability and adaptation to multiple interacting socioeconomic and biophysical changes is lacking. This review and synthesis paper aims to fill this gap through presenting a conceptual framework for integrating multiple exposures into vulnerability analysis and adaptation planning. To support applications of the framework and facilitate assessments and comparative analyses of community vulnerability, we develop a comprehensive typology of drivers and exposures experienced by coastal communities. Our results reveal essential elements of a pragmatic approach for local-scale vulnerability analysis and for planning appropriate adaptations within the context of multiple interacting exposures. We also identify methodologies for characterizing exposures and impacts, exploring interactions and identifying and prioritizing responses. This review focuses on coastal communities; however, we believe the framework, typology and approach will be useful for understanding vulnerability and planning adaptation to multiple exposures in various social-ecological contexts

    Communities and change in the anthropocene: understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures

    No full text

    Habitat-specific food webs and trophic interactions supporting coastal-dependent fishery species: an Australian case study

    No full text

    Biology and Ecology of Long Island Sound

    No full text
    corecore