31 research outputs found

    The Role of Nitric Oxide Synthase in Post-Operative Hyperglycaemia

    Get PDF
    Post-operative hyperglycaemia is important with regard to outcomes of surgical operations. It affects post-operative morbidity, length of hospital stay, and mortality. Poor peri-operative blood glucose control leads to a higher risk of post-operative complication. Insulin resistance as a cause of post-operative hyperglycaemia has been blamed for some time. Nitric Oxide (NO) is produced by nitric oxide synthase (NOS) isoenzymes. Inducible nitric oxide synthase (iNOS) is not a normal cellular constitute. It is expressed by cytokines and non-cytokines e.g. fasting, trauma, intravenous glucose, and lipid infusion, which are encountered in surgical operations. Review of current published data on postoperative hyperglycaemia was completed. Our studies and others were explored for the possible role of NO in this scenario. Induction and expression of iNOS enzyme in pancreatic islet cells is included in the chaotic postoperative blood glucose control. The high concentrations of iNOS derived NO are toxic to pancreatic Ξ²-cells and may inhibit insulin secretion postoperatively. Hence, current peri-operative management is questionable regarding post-operative hyperglycaemia and necessitates development of a new strategy

    Review Article: The Role of Nitric Oxide Synthase in Post-Operative Hyperglycaemia

    Get PDF
    Post-operative hyperglycaemia is important with regard to outcomes of surgical operations. It affects post-operative morbidity, length of hospital stay, and mortality. Poor peri-operative blood glucose control leads to a higher risk of post-operative complication. Insulin resistance as a cause of postoperative hyperglycaemia has been blamed for some time. Nitric Oxide (NO) is produced by nitric oxide synthase (NOS) isoenzymes. Inducible nitric oxide synthase (iNOS) is not a normal cellular constitute. It is expressed by cytokines and non-cytokines e.g. fasting, trauma, intravenous glucose, and lipid infusion, which are encountered in surgical operations. Review of current published data on postoperative hyperglycaemia was completed. Our studies and others were explored for the possible role of NO in this scenario. Induction and expression of iNOS enzyme in pancreatic islet cells is included in the chaotic postoperative blood glucose control. The high concentrations of iNOS derived NO are toxic to pancreatic β-cells and may inhibit insulin secretion postoperatively. Hence, current peri-operative management is questionable regarding post-operative hyperglycaemia and necessitates development of a new strategy. Keywords: NO, glucotoxicity, lipotoxicity, post-operative hyperglycaemia, pancreatic islets. Libyan Journal of Medicine Vol. 3 (3) 2008: pp. 26-3

    Could Spontaneous Retroperitoneal Haematoma Present with Scrotal Mass?

    Get PDF
    Background: Retroperitoneal haematoma could be caused by different factors. It is increasing due to an increase in the use of antithrombotic and anticoagulant therapy. Diagnosis of retroperitoneal haematoma forms a big challenge in daily clinical practice. Patients with retroperitoneal haematoma could present with leg paresis, abdominal pain, shock or abdominal compartment syndrome. Retroperitoneal haematoma could be treated conservatively but surgical interference or embolization of the bleeding vessels is always an option. Objectives: To present a case with spontaneous retroperitoneal haematoma presenting with scrotal haematoma together with a mini- review of retroperitoneal haematoma. Conclusions: Retroperitoneal haematoma may present with a scrotal swelling and could be treated conservatively depending on the presentation and severity of the bleeding

    Is Global Warming likely to cause an increased incidence of Malaria?

    Get PDF
    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world

    Palmitate-Induced Ξ²-Cell Dysfunction Is Associated with Excessive NO Production and Is Reversed by Thiazolidinedione-Mediated Inhibition of GPR40 Transduction Mechanisms

    Get PDF
    BACKGROUND: Type 2 diabetes often displays hyperlipidemia. We examined palmitate effects on pancreatic islet function in relation to FFA receptor GPR40, NO generation, insulin release, and the PPARgamma agonistic thiazolidinedione, rosiglitazone. PRINCIPAL FINDINGS: Rosiglitazone suppressed acute palmitate-stimulated GPR40-transduced PI hydrolysis in HEK293 cells and insulin release from MIN6c cells and mouse islets. Culturing islets 24 h with palmitate at 5 mmol/l glucose induced beta-cell iNOS expression as revealed by confocal microscopy and increased the activities of ncNOS and iNOS associated with suppression of glucose-stimulated insulin response. Rosiglitazone reversed these effects. The expression of iNOS after high-glucose culturing was unaffected by rosiglitazone. Downregulation of GPR40 by antisense treatment abrogated GPR40 expression and suppressed palmitate-induced iNOS activity and insulin release. CONCLUSION: We conclude that, in addition to mediating acute FFA-stimulated insulin release, GPR40 is an important regulator of iNOS expression and dysfunctional insulin release during long-term exposure to FFA. The adverse effects of palmitate were counteracted by rosiglitazone at GPR40, suggesting that thiazolidinediones are beneficial for beta-cell function in hyperlipidemic type 2 diabetes

    Excessive Islet NO Generation in Type 2 Diabetic GK Rats Coincides with Abnormal Hormone Secretion and Is Counteracted by GLP-1

    Get PDF
    BACKGROUND: A distinctive feature of type 2 diabetes is inability of insulin-secreting beta-cells to properly respond to elevated glucose eventually leading to beta-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of beta-cell dysfunction. PRINCIPAL FINDINGS: We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon. CONCLUSION: The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms
    corecore