27 research outputs found

    Triggered optical coherence tomography for capturing rapid periodic motion

    Get PDF
    Quantitative cross-sectional imaging of vocal folds during phonation is potentially useful for diagnosis and treatments of laryngeal disorders. Optical coherence tomography (OCT) is a powerful technique, but its relatively low frame rates makes it challenging to visualize rapidly vibrating tissues. Here, we demonstrate a novel method based on triggered laser scanning to capture 4-dimensional (4D) images of samples in motu at audio frequencies over 100 Hz. As proof-of-concept experiments, we applied this technique to imaging the oscillations of biopolymer gels on acoustic vibrators and aerodynamically driven vibrations of the vocal fold in an ex vivo calf larynx model. Our results suggest that triggered 4D OCT may be useful in understanding and assessing the function of vocal folds and developing novel treatments in research and clinical settings

    Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immobilization of biologically active proteins on nanosized surfaces is a key process in bionanofabrication. Carbon nanotubes with their high surface areas, as well as useful electronic, thermal and mechanical properties, constitute important building blocks in the fabrication of novel functional materials.</p> <p>Results</p> <p>Lipases from <it>Candida rugosa </it>(CRL) were found to be adsorbed on the multiwalled carbon nanotubes with very high retention of their biological activity (97%). The immobilized biocatalyst showed 2.2- and 14-fold increases in the initial rates of transesterification activity in nearly anhydrous hexane and water immiscible ionic liquid [Bmim] [PF6] respectively, as compared to the lyophilized powdered enzyme. It is presumed that the interaction with the hydrophobic surface of the nanotubes resulted in conformational changes leading to the 'open lid' structure of CRL. The immobilized enzyme was found to give 64% conversion over 24 h (as opposed to 14% with free enzyme) in the formation of butylbutyrate in nearly anhydrous hexane. Similarly, with ionic liquid [Bmim] [PF6], the immobilized enzyme allowed 71% conversion as compared to 16% with the free enzyme. The immobilized lipase also showed high enantioselectivity as determined by kinetic resolution of (±) 1-phenylethanol in [Bmim] [PF6]. While free CRL gave only 5% conversion after 36 h, the immobilized enzyme resulted in 37% conversion with > 99% enantiomeric excess. TEM studies on the immobilized biocatalyst showed that the enzyme is attached to the multiwalled nanotubes.</p> <p>Conclusion</p> <p>Successful immobilization of enzymes on nanosized carriers could pave the way for reduced reactor volumes required for biotransformations, as well as having a use in the construction of miniaturized biosensensor devices.</p

    Biomolecule-Nanomaterial Interactions: Effect on Biomolecular Structure, Function, and Stability

    No full text
    We have characterized the influence of protein–carbon nanotube interactions on protein structure and function using various techniques such as Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and atomic force microscopy. This structure-based analysis revealed that different proteins interact with nanotubes differentially, consistent with the observed biological activity data. Furthermore, the high degree of surface curvature of the nanoscale support was found to play an important role in stabilizing proteins under denaturing conditions. Along with these fundamental studies, various applications of such highly active and stable nanotube–protein conjugates have been pursued, which include self-cleaning nanobiocomposite films, interfacial biocatalysis in a biphasic medium, and synthesis of nanotube–nanoparticle hybrids, among others

    The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs

    No full text
    This paper introduces a special issue on the ecotoxicology and environmental chemistry of nanoparticles (NPs), and nanomaterials (NMs), in the journal Ecotoxicology. There are many types of NMs and the scientific community is making observations on NP ecotoxicity to inform the wider debate about the risks and benefits of these materials. Natural NPs have existed in the environment since the beginning of Earth’s history, and natural sources can be found in volcanic dust, most natural waters, soils and sediments. Natural NPs are generated by a wide variety of geological and biological processes, and while there is evidence that some natural NPs can be toxic, organisms have also evolved in an environment containing natural NPs. There are concerns that natural nano-scale process could be influenced by the presence of pollution. Manufactured NPs show some complex colloid and aggregation chemistry, which is likely to be affected by particle shape, size, surface area and surface charge, as well as the adsorption properties of the material. Abiotic factors such as pH, ionic strength, water hardness and the presence of organic matter will alter aggregation chemistry; and are expected to influence toxicity. The physico-chemistry is essential to understanding of the fate and behaviour of NPs in the environment, as well as uptake and distribution within organisms, and the interactions of NPs with other pollutants. Data on biological effects show that NPs can be toxic to bacteria, algae, invertebrates and fish species, as well as mammals. However, much of the ecotoxicological data is limited to species used in regulatory testing and freshwater organism. Data on bacteria, terrestrial species, marine species and higher plants is particularly lacking. Detailed investigations of absorption, distribution, metabolism and excretion (ADME) remain to be performed on species from the major phyla, although there are some data on fish. The environmental risk assessment of NMs could be performed using the existing tiered approach and regulatory framework, but with modifications to methodology including chemical characterisation of the materials being used. There are many challenges ahead, and controversies (e.g., reference substances for ecotoxicology), but knowledge transfer from mammalian toxicology, colloid chemistry, as well as material and geological sciences, will enable ecotoxicology studies to move forward in this new multi-disciplinary field
    corecore