61 research outputs found

    Dual-source CT for chest pain assessment

    Get PDF
    Comprehensive CT angiography protocols offering a simultaneous evaluation of pulmonary embolism, coronary stenoses and aortic disease are gaining attractiveness with recent CT technology. The aim of this study was to assess the diagnostic accuracy of a specific dual-source CT protocol for chest pain assessment. One hundred nine patients suffering from acute chest pain were examined on a dual-source CT scanner with ECG gating at a temporal resolution of 83 ms using a body-weight-adapted contrast material injection regimen. The images were evaluated for the cause of chest pain, and the coronary findings were correlated to invasive coronary angiography in 29 patients (27%). The files of patients with negative CT examinations were reviewed for further diagnoses. Technical limitations were insufficient contrast opacification in six and artifacts from respiration in three patients. The most frequent diagnoses were coronary stenoses, valvular and myocardial disease, pulmonary embolism, aortic aneurysm and dissection. Overall sensitivity for the identification of the cause of chest pain was 98%. Correlation to invasive coronary angiography showed 100% sensitivity and negative predictive value for coronary stenoses. Dual-source CT offers a comprehensive, robust and fast chest pain assessment

    Actin: its cumbersome pilgrimage through cellular compartments

    Get PDF
    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin

    ACCURATUM: improved calcium volume scoring using a mesh-based algorithm-a phantom study

    Full text link
    To overcome the limitations of the classical volume scoring method for quantifying coronary calcifications, including accuracy, variability between examinations, and dependency on plaque density and acquisition parameters, a mesh-based volume measurement method has been developed. It was evaluated and compared with the classical volume scoring method for accuracy, i.e., the normalized volume (measured volume/ground-truthed volume), and for variability between examinations (standard deviation of accuracy). A cardiac computed-tomography (CT) phantom containing various cylindrical calcifications was scanned using different tube voltages and reconstruction kernels, at various positions and orientations on the CT table and using different slice thicknesses. Mean accuracy for all plaques was significantly higher (p < 0.0001) for the proposed method (1.220 +/- 0.507) than for the classical volume score (1.896 +/- 1.095). In contrast to the classical volume score, plaque density (p = 0.84), reconstruction kernel (p = 0.19), and tube voltage (p = 0.27) had no impact on the accuracy of the developed method. In conclusion, the method presented herein is more accurate than classical calcium scoring and is less dependent on tube voltage, reconstruction kernel, and plaque density
    • …
    corecore