58 research outputs found

    Global burden of disease due to smokeless tobacco consumption in adults : analysis of data from 113 countries

    Get PDF
    BACKGROUND: Smokeless tobacco is consumed in most countries in the world. In view of its widespread use and increasing awareness of the associated risks, there is a need for a detailed assessment of its impact on health. We present the first global estimates of the burden of disease due to consumption of smokeless tobacco by adults. METHODS: The burden attributable to smokeless tobacco use in adults was estimated as a proportion of the disability-adjusted life-years (DALYs) lost and deaths reported in the 2010 Global Burden of Disease study. We used the comparative risk assessment method, which evaluates changes in population health that result from modifying a population's exposure to a risk factor. Population exposure was extrapolated from country-specific prevalence of smokeless tobacco consumption, and changes in population health were estimated using disease-specific risk estimates (relative risks/odds ratios) associated with it. Country-specific prevalence estimates were obtained through systematically searching for all relevant studies. Disease-specific risks were estimated by conducting systematic reviews and meta-analyses based on epidemiological studies. RESULTS: We found adult smokeless tobacco consumption figures for 115 countries and estimated burden of disease figures for 113 of these countries. Our estimates indicate that in 2010, smokeless tobacco use led to 1.7 million DALYs lost and 62,283 deaths due to cancers of mouth, pharynx and oesophagus and, based on data from the benchmark 52 country INTERHEART study, 4.7 million DALYs lost and 204,309 deaths from ischaemic heart disease. Over 85 % of this burden was in South-East Asia. CONCLUSIONS: Smokeless tobacco results in considerable, potentially preventable, global morbidity and mortality from cancer; estimates in relation to ischaemic heart disease need to be interpreted with more caution, but nonetheless suggest that the likely burden of disease is also substantial. The World Health Organization needs to consider incorporating regulation of smokeless tobacco into its Framework Convention for Tobacco Control

    Protandim, a Fundamentally New Antioxidant Approach in Chemoprevention Using Mouse Two-Stage Skin Carcinogenesis as a Model

    Get PDF
    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-κB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention

    Prevalence and burden of HBV co-infection among people living with HIV:A global systematic review and meta-analysis

    Get PDF
    Globally, in 2017 35 million people were living with HIV (PLHIV) and 257 million had chronic HBV infection (HBsAg positive). The extent of HIV-HBsAg co-infection is unknown. We undertook a systematic review to estimate the global burden of HBsAg co-infection in PLHIV. We searched MEDLINE, Embase and other databases for published studies (2002-2018) measuring prevalence of HBsAg among PLHIV. The review was registered with PROSPERO (#CRD42019123388). Populations were categorized by HIV-exposure category. The global burden of co-infection was estimated by applying regional co-infection prevalence estimates to UNAIDS estimates of PLHIV. We conducted a meta-analysis to estimate the odds of HBsAg among PLHIV compared to HIV-negative individuals. We identified 506 estimates (475 studies) of HIV-HBsAg co-infection prevalence from 80/195 (41.0%) countries. Globally, the prevalence of HIV-HBsAg co-infection is 7.6% (IQR 5.6%-12.1%) in PLHIV, or 2.7 million HIV-HBsAg co-infections (IQR 2.0-4.2). The greatest burden (69% of cases; 1.9 million) is in sub-Saharan Africa. Globally, there was little difference in prevalence of HIV-HBsAg co-infection by population group (approximately 6%-7%), but it was slightly higher among people who inject drugs (11.8% IQR 6.0%-16.9%). Odds of HBsAg infection were 1.4 times higher among PLHIV compared to HIV-negative individuals. There is therefore, a high global burden of HIV-HBsAg co-infection, especially in sub-Saharan Africa. Key prevention strategies include infant HBV vaccination, including a timely birth-dose. Findings also highlight the importance of targeting PLHIV, especially high-risk groups for testing, catch-up HBV vaccination and other preventative interventions. The global scale-up of antiretroviral therapy (ART) for PLHIV using a tenofovir-based ART regimen provides an opportunity to simultaneously treat those with HBV co-infection, and in pregnant women to also reduce mother-to-child transmission of HBV alongside HIV

    Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash in a fungal stirred tank aerobic reactor

    No full text
    Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash was studied in a fungal stirred tank aerobic reactor without dilution of wastewater. Aspergillus niger isolate IITB-V8 was used as the fungal inoculum. The main objectives of the study were to optimize the stirrer speed for achieving maximum decolourization and to determine the kinetic parameters. A mathematical model was developed to describe the batch culture kinetics. Volumetric oxygen transfer coefficient (k (L) a) was obtained using dynamic method. The maximum specific growth rate and growth yield of fungus were determined using Logistic equation and using Luedeking-Piret equation. 150 rpm was found to be optimum stirrer speed for overall decolourization of 87%. At the optimum stirrer speed, volumetric oxygen transfer coefficient (k (L) a) was 0.4957 min(-1) and the maximum specific growth rate of fungus was 0.224 h(-1). The values of yield coefficient (Y (x/s)) and maintenance coefficient (m (s)) were found to be 0.48 g cells (g substrate)(-1) and 0.015 g substrate (g cells)(-1) h(-1)

    Optimization of the parameters for decolourization by Aspergillus niger of anaerobically digested distillery spentwash pretreated with polyaluminium chloride

    No full text
    Molasses spentwash from distilleries is characterized by high COD and colour. The fungal decolourization of anaerobically digested molasses spentwash requires significant dilution. In this study, decolourization by Aspergillus niger isolate IITB-V8 was performed on polyaluminium chloride (PAC) treated anaerobically digested spentwash without dilution of wastewater. Optimization of parameters was studied using statistical experimental designs. In the first step, Plackett-Burman design was used for screening the important parameters. Glucose was taken as the carbon source for the growth of A. niger. KH(2)PO(4) and pH were found to be the important factors affecting decolourization. In the second step, Box-Behnken design was used to determine the optimum level of each of the significant parameters. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important factors to achieve maximum decolourization of 68.4% were 5.5 g/L Glucose, 1.2 g/L KH(2)PO(4) and 5 pH. The determination coefficient (R(2)) was 0.9973, which ensures adequate credibility of the model. The total decolourization obtained after fungal treatment was 86.8% which indicates fungal decolourization after pretreatment with PAC is a viable option for the treatment of digested molasses spentwash. (C) 200
    corecore