323 research outputs found

    Myosin II synergizes with F-actin to promote DNGR-1-dependent cross-presentation of dead cell-associated antigens

    Get PDF
    Conventional type 1 DCs (cDC1s) excel at cross-presentationĀ of dead cell-associated antigens partly because they express DNGR-1, a receptor that recognizes exposed actin filaments on dead cells. InĀ vitro polymerized F-actin can be used as a synthetic ligand for DNGR-1. However, cellular F-actin is decorated with actin-binding proteins, which could affect DNGR-1 recognition. Here, we demonstrate that myosin II, an F-actin-associated motor protein, greatly potentiates the binding of DNGR-1 to F-actin. Latex beads coated with F-actin and myosin II are taken up by DNGR-1+ cDC1s, and antigen associated with those beads is efficiently cross-presented to CD8+ TĀ cells. Myosin II-deficient necrotic cells are impaired in their ability to stimulate DNGR-1 or to serve as substrates for cDC1 cross-presentationĀ to CD8+ TĀ cells. These results provide insights into the nature of the DNGR-1 ligand and have implications for understanding immune responses to cell-associated antigens and for vaccine design

    A Comparative Study of Human TLR 7/8 Stimulatory Trimer Compositions in Influenza A Viral Genomes

    Get PDF
    Background: Variation in the genomes of single-stranded RNA viruses affects their infectivity and pathogenicity in two ways. First, viral genome sequence variations lead to changes in viral protein sequences and activities. Second, viral genome sequence variation produces diversity at the level of nucleotide composition and diversity in the interactions between viral RNAs and host toll-like receptors (TLRs). A viral genome-typing method based on this type of diversity has not yet been established. Methodology/Principal Findings: In this study, we propose a novel genomic trait called the ā€˜ā€˜TLR stimulatory trimer compositionā€™ ā€™ (TSTC) and two quantitative indicators, Score S and Score N, named ā€˜ā€˜TLR stimulatory scoresā€™ ā€™ (TSS). Using the complete genome sequences of 10,994 influenza A viruses (IAV) and 251 influenza B viruses, we show that TSTC analysis reveals the diversity of Score S and Score N among the IAVs isolated from various hosts. In addition, we show that low values of Score S are correlated with high pathogenicity and pandemic potential in IAVs. Finally, we use Score S and Score N to construct a logistic regression model to recognize IAV strains that are highly pathogenic or have high pandemic potential. Conclusions/Significance: Results from the TSTC analysis indicate that there are large differences between human and avian IAV genomes (except for segment 3), as illustrated by Score S. Moreover, segments 1, 2, 3 and 4 may be majo

    Plant virus particles carrying tumour antigen activate TLR7 and induce high levels of protective antibody

    No full text
    Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the "gold standard" Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-? by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe "in-built" ssRNA adjuvant

    Plant Vaccines: An Immunological Perspective.

    Get PDF
    The advent of technologies to express heterologous proteins in planta has led to the proposition that plants may be engineered to be safe, inexpensive vehicles for the production of vaccines and possibly even vectors for their delivery. The immunogenicity of a variety of antigens of relevance to vaccination expressed in different plants has been assessed. The purpose of this article is to examine the utility of plant-expression systems in vaccine development from an immunological perspective

    Oxidative stress augments toll-like receptor 8 mediated neutrophilic responses in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR) activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro.</p> <p>Methods</p> <p>Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848) in the presence or absence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed.</p> <p>Results</p> <p>Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H<sub>2</sub>O<sub>2 </sub>(p < 0.01), and N-acetyl-<smcaps>L</smcaps>-cysteine reversed this potentiation. The combination of H<sub>2</sub>O<sub>2 </sub>and R848 significantly potentiated NF-kB phosphorylation and IkBĪ± degradation. The H<sub>2</sub>O<sub>2</sub>-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88), and tumor necrosis factor receptor-associated factor 6 (TRAF6) were not affected by H<sub>2</sub>O<sub>2</sub>.</p> <p>Conclusion</p> <p>TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.</p

    Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain

    Get PDF
    Imaging techniques based on optical contrast analysis can be used to visualize dynamic and functional properties of the nervous system via optical signals resulting from changes in blood volume, oxygen consumption and cellular swelling associated with brain physiology and pathology. Here we report in vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means of laser-induced photoacoustic tomography (PAT). The advantage of PAT over pure optical imaging is that it retains intrinsic optical contrast characteristics while taking advantage of the diffraction-limited high spatial resolution of ultrasound. We accurately mapped rat brain structures, with and without lesions, and functional cerebral hemodynamic changes in cortical blood vessels around the whisker-barrel cortex in response to whisker stimulation. We also imaged hyperoxia- and hypoxia-induced cerebral hemodynamic changes. This neuroimaging modality holds promise for applications in neurophysiology, neuropathology and neurotherapy

    Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis

    Get PDF
    Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor

    Influenza A Virus Induces an Immediate Cytotoxic Activity in All Major Subsets of Peripheral Blood Mononuclear Cells

    Get PDF
    A replication defective influenza A vaccine virus (delNS1 virus) was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells.Peripheral blood mononuclear cells (PBMCs), isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt) virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN) interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood.Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer
    • ā€¦
    corecore