22 research outputs found

    Randomized Trial of Reduced-Nicotine Standards for Cigarettes

    No full text
    BACKGROUND: The Food and Drug Administration can set standards that reduce the nicotine content of cigarettes. METHODS: We conducted a double-blind, parallel, randomized clinical trial between June 2013 and July 2014 at 10 sites. Eligibility criteria included an age of 18 years or older, smoking of five or more cigarettes per day, and no current interest in quitting smoking. Participants were randomly assigned to smoke for 6 weeks either their usual brand of cigarettes or one of six types of investigational cigarettes, provided free. The investigational cigarettes had nicotine content ranging from 15.8 mg per gram of tobacco (typical of commercial brands) to 0.4 mg per gram. The primary outcome was the number of cigarettes smoked per day during week 6. RESULTS: A total of 840 participants underwent randomization, and 780 completed the 6-week study. During week 6, the average number of cigarettes smoked per day was lower for participants randomly assigned to cigarettes containing 2.4, 1.3, or 0.4 mg of nicotine per gram of tobacco (16.5, 16.3, and 14.9 cigarettes, respectively) than for participants randomly assigned to their usual brand or to cigarettes containing 15.8 mg per gram (22.2 and 21.3 cigarettes, respectively; P<0.001). Participants assigned to cigarettes with 5.2 mg per gram smoked an average of 20.8 cigarettes per day, which did not differ significantly from the average number among those who smoked control cigarettes. Cigarettes with lower nicotine content, as compared with control cigarettes, reduced exposure to and dependence on nicotine, as well as craving during abstinence from smoking, without significantly increasing the expired carbon monoxide level or total puff volume, suggesting minimal compensation. Adverse events were generally mild and similar among groups. CONCLUSIONS: In this 6-week study, reduced-nicotine cigarettes versus standard-nicotine cigarettes reduced nicotine exposure and dependence and the number of cigarettes smoked. (Funded by the National Institute on Drug Abuse and the Food and Drug Administration Center for Tobacco Products; ClinicalTrials.gov number, NCT01681875.

    Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates.

    No full text
    Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and β; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5'-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5'-diphosphates (5'pp). Genomes from mammalian reoviruses with 5'pp termini, 5'pp-RNA isolated from yeast L-A virus, and base-paired 5'pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5'pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5'pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5'pp-RNA, like that of 5'ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system

    Very Low Nicotine Content Cigarettes and Potential Consequences on Cardiovascular Disease

    No full text
    Cigarette smoking remains highly prevalent in the U.S. and contributes significantly to cardiovascular disease (CVD). Tobacco control policies, including product regulation, can reduce smoking-related harm. One approach being considered in the U.S. is for the FDA to set a low nicotine standard for cigarettes. Such a standard could result in multiple beneficial outcomes including reduced cardiovascular toxicity related to nicotine, reduced smoking intensity in current smokers, increased cessation rates, decreased development of smoking dependence in youth, and decreased passive smoke exposure. Consequently, CVD risk in the U.S. could be dramatically improved by nicotine reduction in cigarettes. Possible pathways linking nicotine reduction in cigarettes to decreased CVD risk are discussed, while potential unintended consequences that could offset expected gains are also presented. Gaps in the literature, including limited data on CVD biomarkers and long-term CVD outcomes following the use of very low nicotine cigarettes, are discussed to highlight areas for new research
    corecore