9 research outputs found

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores

    Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase

    No full text
    A previously determined crystal structure of the ternary complex of trehalose-6-phosphate synthase identified a putative transition state–like arrangement based on validoxylamine A 6?-O-phosphate and uridine diphosphate in the active site. Here linear free energy relationships confirm that these inhibitors are synergistic transition state mimics, supporting front-face nucleophilic attack involving hydrogen bonding between leaving group and nucleophile. Kinetic isotope effects indicate a highly dissociative oxocarbenium ion–like transition state. Leaving group 18O effects identified isotopically sensitive bond cleavages and support the existence of a hydrogen bond between the nucleophile and departing group. Brþnsted analysis of nucleophiles and Taft analysis highlight participation of the nucleophile in the transition state, also consistent with a front-face mechanism. Together, these comprehensive, quantitative data substantiate this unusual enzymatic reaction mechanism. Its discovery should prompt useful reassessment of many biocatalysts and their substrates and inhibitor

    Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli

    No full text

    Enzymatic C-C bond formation in asymmetric synthesis

    No full text

    Overcoming the translational barriers of tissue adhesives

    No full text

    The role of ATP-binding cassette transporters in bacterial pathogenicity

    No full text
    corecore