32 research outputs found
PIN-mediated polar auxin transport regulations in plant tropic responses
Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment
Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: theory and experiment.
Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol assisted chemical vapour deposition (AACVD) to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase, and showed excellent antibacterial (vs S.Aureus and E.Coli) ability. Using a combination of transient absorption spectroscopy (TAS), photoluminescence (PL) measurements and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples, and the enhanced UV/visible light photoactivities observed
Endothelial dysfunction in obese non-hypertensive children without evidence of sleep disordered breathing
<p>Abstract</p> <p>Background</p> <p>Endothelial dysfunction is a complication of both obesity and obstructive sleep apnea syndrome (OSAS), the latter being highly prevalent among obese children. It is unknown whether obesity causes endothelial dysfunction in children in the absence of OSAS. This study examines endothelial function in obese and non-obese children without OSAS.</p> <p>Methods</p> <p>Pre-pubertal non-hypertensive children were recruited. Endothelial function was assessed in a morning fasted state, using a modified hyperemic test involving cuff-induced occlusion of the radial and ulnar arteries. The absence of OSAS was confirmed by overnight polysomnography. Anthropometry was also performed.</p> <p>Results</p> <p>55 obese children (mean age 8.6 ± 1.4 years, mean BMI z-score: 2.3 ± 0.3) were compared to 50 non-obese children (mean age 8.0 ± 1.6 years, mean BMI z-score 0.3 ± 0.9). Significant delays to peak capillary reperfusion after occlusion release occurred in obese compared to non-obese children (45.3 ± 21.9 sec <it>vs</it>. 31.5 ± 14.1 sec, p < 0.01), but no differences in the magnitude of hyperemia emerged. Time to peak reperfusion and percentage of body fat were positively correlated (r = 0.365, p < 0.01).</p> <p>Conclusions</p> <p>Our findings confirm that endothelial dysfunction occurs early in life in obese children, even in the absence of OSAS. Thus, mechanisms underlying endothelial dysfunction in pediatric obesity are operational in the absence of sleep-disordered breathing.</p