29 research outputs found

    Hookah smoking is strongly associated with diabetes mellitus, metabolic syndrome and obesity: a population-based study

    Get PDF
    Objectives The adverse effects of cigarette smoking have been widely studied before, whilst the effects of hookah smoking has received less attention, although it is a common habit in the Middle East. Here we have investigated the effects of cigarette and hookah smoking on biochemical characteristics in a representative population sample derived from the Mashhad stroke and heart atherosclerotic disorder (MASHAD) cohort study, from Northeastern Iran. Study design A total of 9840 subjects from the MASHAD population study were allocated to five groups; non-smokers (6742), ex-smokers (976), cigarette smokers (864), hookah smokers (1067), concomitant cigarette and hookah smokers (41). Methods Baseline characteristics were recorded in a questionnaire. Biochemical characteristics were measured by routine methods. Data were analyzed using SPSS software and p < 0.05 was considered significant. Results After adjustment for age and sex; the presence of CVD, obesity, metabolic syndrome, DM and dyslipidemia were significantly (p < 0.001) related to smoking status. After multivariate analysis, HDL (p < 0.001), WBC (p < 0.001), MCV (p < 0.05), PLT (p < 0.01) and RDW (p < 0.001), and the presence of CVD (p < 0.01), obesity (p < 0.001), metabolic syndrome (p < 0.05) and DM (p < 0.01) remained significant between cigarette smokers and non-smokers. Between hookah smokers and non-smokers; uric acid (p < 0.001), PLT (p < 0.05) and RDW (p < 0.05), and the presence of obesity (p < 0.01), metabolic syndrome (p < 0.001), diabetes (p < 0.01) and dyslipidemia (p < 0.01) remained significant after logistic regression. Conclusion There was a positive association between hookah smoking and metabolic syndrome, diabetes, obesity and dyslipidemia which was not established in cigarette smoking

    Protective effect of vanadyl sulfate on skin injury in streptozotocin-induced diabetic rats

    No full text
    The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the skin tissues of diabetic and control rats. In this study, 6-6.5 months old male Swiss albino rats were used. The animals were randomly divided into the following four groups: group I, control (nondiabetic intact animals); group II, vanadyl sulfate control; group III, streptozotocin (STZ)-diabetic animals and group IV, STZ-diabetic animals given vanadyl sulfate. The animals were made diabetic by intraperitoneal injection of a single dose of 65mg/kg STZ in 0.01M citrate buffer (pH=4.5). From day 1 to day 60, 100mg/kg vanadyl sulfate was given daily by gavage technique to one of the control and diabetic groups. Body weights and blood glucose levels were estimated on experimental days 0, 1 and 60. On the 60th day, skin tissue samples were taken, glutathione (GSH), lipid peroxidation (LPO), nonenzymatic glycosylation (NEG) and protein levels, catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were determined. Blood glucose, skin LPO and NEG levels increased, but skin GSH levels and CAT, SOD and GST activities decreased in the STZ group. Treatment with vanadyl sulfate reversed these effects. The present study showed that vanadyl sulfate exerted antioxidant properties and may prevent skin damage caused by diabetes

    Laser and Light-Based Therapies in the Treatment of Hair Loss

    No full text
    Laser and light-based therapies including low-level laser and light therapy, fractional, excimer, and other lasers are increasingly well-regarded treatment options for patients with hair loss. Lasers emit wavelengths of light specific to a chromophore in the tissue, causing a targeted thermal response with minimal damage to surrounding tissue. The cascade of events downstream of the initial injury is responsible for the clinical effects seen. Low-level laser or light therapy (LLLT) was accidentally discovered in the 1960s when Hungarian scientist Endre Mester attempted to repeat an experiment performed by American Paul McGuff, who had cured malignant tumors in rats using a ruby laser. Mester’s laser was much less powerful than McGuff’s, and while he did not successfully cure any tumors, he observed for the first time that a low-level laser induced hair growth and improved wound healing. The mechanism by which this occurs is described as photobiomodulation or the stimulation of biological processes in the target tissue. This accidental discovery is the basis for the huge variety of LLLT products available on the market today. In the last 2 years alone, the number of approved items classified as laser, comb, or hair products intended for the purpose of the growth of scalp hairs on the FDA’s 510(k) premarket notification list, meaning the device is demonstrated to be at least safe and effective, has nearly doubled to a total of 50. This chapter will summarize current knowledge regarding all laser and light devices for patients with various forms of alopecia and will outline treatment strategy, device parameters, and appropriate limitations of use to guide providers toward optimal patient management
    corecore