19,976 research outputs found
Recommended from our members
Assay for free secretory component and methods for monitoring organ rejection
Methods of monitoring and detecting the early onset of organ injury incident rejection of a organ rejection in an animal are disclosed. The described methods are capable of distinguishing organ rejection injury from other organ tissue damage in the animal. Free secretory component levels in an animal biological fluid (e.g., bile, urine, blood, amniotic fluid) may be used to identify organ rejection in an animal. Multiple and single organ transplant patients may be monitored and diagnosed according to the claimed methods. Biological fluids, such as blood, (serum) or urine, are analyzed immunologically using a particularly adapted ELISA which are then compared to an FSC control concentration to identify elevated FSC values. Animals with test FSC above FSC control concentrations are diagnosed as having an ongoing organ rejection episode. The detection of congenital renal dysfunction in utero is also provided according to the present invention through the measurement of FSC in the amniotic fluid. The described methods are specific for indicating organ rejection tissue injury, and distinguish kidney rejection tissue injury, in particular, from other causes of kidney injury, such as cyclosporin toxicity, urinary tract infection, and urinary obstruction and toxicity (incident to immunosuppressive therapy with cyclosporin). A kit for use in the identification of an organ rejection episode in a patient through measurement of FSC in a biological sample is also provided.Board of Regents, University of Texas Syste
On site challenges for the construction of 16-storey condominium: as observed by a young civil engineering technologist
The difference between an engineer and an engineering technologist is that, an engineer would mainly focus and produce structural designs based on engineering calculations, while the job of an engineering technologist is to execute the design in the real working environment by adopting flexible and critical technical ideas on-site. The challenges can be divided into two categories, namely design challenges faced by an engineer and the construction challenges faced by an engineering technologist. Thus, the job scope of an engineering technologist is relatively wider when compared to that of an engineer, as the engineering technologist would be dealing with the consultant, contractors and suppliers on site, while handling the in situ construction challenges. This requires basic understanding of engineering principles and technology, critical thinking and problem-solving skills, modern tools competency in software applications, designs and construction calculations, as well as communication and leadership skills all rolled into one. I have recorded my experience as a junior civil engineering technologist engaged in the construction works of a 16-storey condominium at Langkawi, Kedah. Included in the descriptions are in situ technical problems encountered, potentially unsafe working conditions, foundations, scheduling and housekeeping on site, among others. I hope that the information shared in this entry would make a good introduction and induction for juniors entering the work site, where my personal undertakings could serve as a guide and reminder for them
Bivalirudin versus unfractionated heparin: a meta-analysis of patients receiving percutaneous coronary intervention for acute coronary syndromes
OBJECTIVE: Acute coronary syndrome (ACS) encompasses ST segment elevation myocardial infarction (STEMI), with generally high thrombus burden and non-ST segment elevation ACS (NSTE-ACS), with lower thrombus burden. In the setting of percutaneous coronary intervention (PCI) for ACS, bivalirudin appears superior to unfractionated heparin (UFH), driven by reduced major bleeding. Recent trials suggest that the benefit of bivalirudin may be reduced with use of transradial access and evolution in antiplatelet therapy. Moreover, a differential role of bivalirudin in ACS cohorts is unknown. METHODS: A meta-analysis of randomised trials comparing bivalirudin and UFH in patients with ACS receiving PCI, with separate analyses in STEMI and NSTE-ACS groups. Overall estimates of treatment effect were calculated with random-effects model. RESULTS: In 5 trials of STEMI (10 358 patients), bivalirudin increased the risk of acute stent thrombosis (ST) (OR 3.62; CI 1.95 to 6.74; p<0.0001) compared with UFH. Bivalirudin reduced the risk of major bleeding only when compared with UFH plus planned glycoprotein IIb/IIIa inhibitors (GPI) (OR 0.49; CI 0.36 to 0.67; p<0.00001). In 14 NSTE-ACS trials (25 238 patients), there was no difference between bivalirudin and UFH in death, myocardial infarction or ST. However, bivalirudin reduced the risk of major bleeding compared with UFH plus planned GPI (OR 0.52; CI 0.43 to 0.62; p<0.00001), or UFH plus provisional GPI (OR 0.68; CI 0.46 to 1.01; p=0.05). The reduction in major bleeding with bivalirudin was not related to vascular access site. CONCLUSIONS: Bivalirudin increases the risk of acute ST in STEMI, but may confer an advantage over UFH in NSTE-ACS while undergoing PCI, reducing major bleeding without an increase in ST
Nonlinear Oscillations and Bifurcations in Silicon Photonic Microresonators
Silicon microdisks are optical resonators that can exhibit surprising
nonlinear behavior. We present a new analysis of the dynamics of these
resonators, elucidating the mathematical origin of spontaneous oscillations and
deriving predictions for observed phenomena such as a frequency comb spectrum
with MHz-scale repetition rate. We test predictions through laboratory
experiment and numerical simulation.Comment: Main text: 5 pages, 6 figures. Supplemental material: 12 pages, 8
figure
Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT
Graphs embedded into surfaces have many important applications, in
particular, in combinatorics, geometry, and physics. For example, ribbon graphs
and their counting is of great interest in string theory and quantum field
theory (QFT). Recently, Koch, Ramgoolam, and Wen [Nuclear Phys.\,B {\bf 870}
(2013), 530--581] gave a refined formula for counting ribbon graphs and
discussed its applications to several physics problems. An important factor in
this formula is the number of surface-kernel epimorphisms from a co-compact
Fuchsian group to a cyclic group. The aim of this paper is to give an explicit
and practical formula for the number of such epimorphisms. As a consequence, we
obtain an `equivalent' form of the famous Harvey's theorem on the cyclic groups
of automorphisms of compact Riemann surfaces. Our main tool is an explicit
formula for the number of solutions of restricted linear congruence recently
proved by Bibak et al. using properties of Ramanujan sums and of the finite
Fourier transform of arithmetic functions
Qualitative System Identification from Imperfect Data
Experience in the physical sciences suggests that the only realistic means of
understanding complex systems is through the use of mathematical models.
Typically, this has come to mean the identification of quantitative models
expressed as differential equations. Quantitative modelling works best when the
structure of the model (i.e., the form of the equations) is known; and the
primary concern is one of estimating the values of the parameters in the model.
For complex biological systems, the model-structure is rarely known and the
modeler has to deal with both model-identification and parameter-estimation. In
this paper we are concerned with providing automated assistance to the first of
these problems. Specifically, we examine the identification by machine of the
structural relationships between experimentally observed variables. These
relationship will be expressed in the form of qualitative abstractions of a
quantitative model. Such qualitative models may not only provide clues to the
precise quantitative model, but also assist in understanding the essence of
that model. Our position in this paper is that background knowledge
incorporating system modelling principles can be used to constrain effectively
the set of good qualitative models. Utilising the model-identification
framework provided by Inductive Logic Programming (ILP) we present empirical
support for this position using a series of increasingly complex artificial
datasets. The results are obtained with qualitative and quantitative data
subject to varying amounts of noise and different degrees of sparsity. The
results also point to the presence of a set of qualitative states, which we
term kernel subsets, that may be necessary for a qualitative model-learner to
learn correct models. We demonstrate scalability of the method to biological
system modelling by identification of the glycolysis metabolic pathway from
data
- …