21 research outputs found

    Biotechnological production and application of fructooligosaccharides

    Get PDF
    Currently, prebiotics are all carbohydrates of relatively short chain length. An important group is the fructooligosaccharides, which are a special kind of prebiotics associated to their selective stimulation of the activity of certain groups of colonic bacteria that have a positive and beneficial effect on intestinal microbiota, reducing incidence of gastrointestinal infections, respiratory and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of fructooligosaccharides, such as solid-state fermentation utilizing various agroindustrial by-products. By optimizing the culture parameters, fructooligosaccharides yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of fructooligosaccharides. This paper is an overview on the results of recent studies on fructooligosacharides biosynthesis, physicochemical properties, sources, biotechnological production and applications.The authors thank the National Council of Science and Technology of Mexico (CONACYT) for funding this study. D. A. Flores-Maltos thank the CONACYT for the financial support provided for her postgraduate studies in the Food Science and Technology Program, Universidad Autonoma de Coahuila, Mexico

    The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin

    Get PDF
    Background An aberrant metabolic activity or a compositional alteration of the gut microbiota has been proposed as a factor that makes us more prone to disease. Therefore, we explored the effect of two dietary fibers (arabinogalactan and inulin) on the microbiota from lean and obese subjects during 72 h in vitro fermentation experiments using the validated TNO dynamic in vitro model of the proximal colon: TIM-2. Metabolically, arabinogalactan fermentation showed a higher production of propionate when compared to n-butyrate in the obese microbiota fermentations. In general, lean microbiota produced more n-butyrate from the fermentation of both substrates when compared to the obese microbiota. Furthermore, the obese microbiota extracted more energy from the fermentation of both fibers. Results Compositionally, bacteria belonging to Gemmiger, Dorea, Roseburia, Alistipes, Lactobacillus and Bifidobacterium genera were found to be highly abundant or stimulated by the prebiotics in the lean microbiota suggesting a potential role in leanness. Furthermore, a significant correlation between known butyrogenic strains including B. adolescentis,an unclassified Bifidobacterium and F. prausnitzii with this metabolite in the fermentation of inulin in both microbiotas was found. Conclusions Although supplementary in vivo studies are needed, the current study provides more evidence for the consumption of specific ingredients with the aim of modulating the gut microbiota in the context of obesity. © 2016 Aguirre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore