501 research outputs found

    SARS Coronavirus-2 Microneutralisation and Commercial Serological Assays Correlated Closely for Some but Not All Enzyme Immunoassays

    Full text link
    Serological testing for SARS-CoV-2-specific antibodies provides important research and diagnostic information relating to COVID-19 prevalence, incidence and host immune response. A greater understanding of the relationship between functionally neutralising antibodies detected using microneutralisation assays and binding antibodies detected using scalable enzyme immunoassays (EIA) is needed in order to address protective immunity post-infection or vaccination, and assess EIA suitability as a surrogate test for screening of convalescent plasma donors. We assessed whether neutralising antibody titres correlated with signal cut-off ratios in five commercially available EIAs, and one in-house assay based on expressed spike protein targets. Sera from recovered patients or convalescent plasma donors who reported laboratory-confirmed SARS-CoV-2 infection (n = 200), and negative control sera collected prior to the COVID-19 pandemic (n = 100), were assessed in parallel. Performance was assessed by calculating EIA sensitivity and specificity with reference to microneutralisation. Neutralising antibodies were detected in 166 (83%) samples. Compared with this, the most sensitive EIAs were the Cobas Elecsys Anti-SARS-CoV-2 (98%) and Vitros Immunodiagnostic Anti-SARS-CoV-2 (100%), which detect total antibody targeting the N and S1 antigens, respectively. The assay with the best quantitative relationship with microneutralisation was the Euroimmun IgG. These results suggest the marker used (total Ab vs. IgG vs. IgA) and the target antigen are important determinants of assay performance. The strong correlation between microneutralisation and some commercially available assays demonstrates their potential for clinical and research use in assessing protection following infection or vaccination, and use as a surrogate test to assess donor suitability for convalescent plasma donation

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness

    Implantation Serine Proteinase 1 Exhibits Mixed Substrate Specificity that Silences Signaling via Proteinase-Activated Receptors

    Get PDF
    Implantation S1 family serine proteinases (ISPs) are tryptases involved in embryo hatching and uterine implantation in the mouse. The two different ISP proteins (ISP1 and ISP2) have been detected in both pre- and post-implantation embryo tissue. To date, native ISP obtained from uterus and blastocyst tissues has been isolated only as an active hetero-dimer that exhibits trypsin-like substrate specificity. We hypothesised that in isolation, ISP1 might have a unique substrate specificity that could relate to its role when expressed alone in individual tissues. Thus, we isolated recombinant ISP1 expressed in Pichia pastoris and evaluated its substrate specificity. Using several chromogenic substrates and serine proteinase inhibitors, we demonstrate that ISP1 exhibits trypsin-like substrate specificity, having a preference for lysine over arginine at the P1 position. Phage display peptide mimetics revealed an expanded but mixed substrate specificity of ISP1, including chymotryptic and elastase activity. Based upon targets observed using phage display, we hypothesised that ISP1 might signal to cells by cleaving and activating proteinase-activated receptors (PARs) and therefore assessed PARs 1, 2 and 4 as potential ISP1 targets. We observed that ISP1 silenced enzyme-triggered PAR signaling by receptor-disarming. This PAR-disarming action of ISP1 may be important for embryo development and implantation

    Pediatric supracondylar fractures of the distal humerus

    Get PDF
    Supracondylar fractures of the humerus are a common pediatric elbow injury that are historically associated with morbidity due to malunion, neurovascular complications, and compartment syndrome. True anteroposterior and lateral radiographs are essential not only for an accurate diagnosis, but also for creating a treatment plan for these injuries. A staging system (based on the lateral radiograph) for classifying the severity of the fracture helps guide definitive management. Nondisplaced fractures are treated initially with a posterior splint, followed by a long-arm casting. Closed reduction and percutaneous pinning is the preferred treatment for displaced or unstable fractures. If there is any question about fracture stability, patients should be seen within 5 days postoperatively for repeat radiographs to ensure that the reduction and pin fixation has been maintained. Understanding the anatomy, radiographic findings, management options, and complications associated with this fracture allow physicians to limit the morbidity associated with this relatively common pediatric injury

    Pharmacogenetic & Pharmacokinetic Biomarker for Efavirenz Based ARV and Rifampicin Based Anti-TB Drug Induced Liver Injury in TB-HIV Infected Patients

    Get PDF
    BACKGROUND: Implication of pharmacogenetic variations and efavirenz pharmacokinetics in concomitant efavirenz based antiviral therapy and anti-tubercular drug induced liver injury (DILI) has not been yet studied. We performed a prospective case-control association study to identify the incidence, pharmacogenetic, pharmacokinetic and biochemical predictors for anti-tubercular and antiretroviral drugs induced liver injury (DILI) in HIV and tuberculosis (TB) co-infected patients. METHODS AND FINDINGS: Newly diagnosed treatment naïve TB-HIV co-infected patients (n = 353) were enrolled to receive efavirenz based ART and rifampicin based anti-TB therapy, and assessed clinically and biochemically for DILI up to 56 weeks. Quantification of plasma efavirenz and 8-hydroxyefaviernz levels and genotyping for NAT2, CYP2B6, CYP3A5, ABCB1, UGT2B7 and SLCO1B1 genes were done. The incidence of DILI and identification of predictors was evaluated using survival analysis and the Cox Proportional Hazards Model. The incidence of DILI was 30.0%, or 14.5 per 1000 person-week, and that of severe was 18.4%, or 7.49 per 1000 person-week. A statistically significant association of DILI with being of the female sex (p = 0.001), higher plasma efavirenz level (p = 0.009), efavirenz/8-hydroxyefavirenz ratio (p = 0.036), baseline AST (p = 0.022), ALT (p = 0.014), lower hemoglobin (p = 0.008), and serum albumin (p = 0.007), NAT2 slow-acetylator genotype (p = 0.039) and ABCB1 3435TT genotype (p = 0.001). CONCLUSION: We report high incidence of anti-tubercular and antiretroviral DILI in Ethiopian patients. Between patient variability in systemic efavirenz exposure and pharmacogenetic variations in NAT2, CYP2B6 and ABCB1 genes determines susceptibility to DILI in TB-HIV co-infected patients. Close monitoring of plasma efavirenz level and liver enzymes during early therapy and/or genotyping practice in HIV clinics is recommended for early identification of patients at risk of DILI

    Modification of the L1-CAM carboxy-terminus in pancreatic adenocarcinoma cells

    Get PDF
    The neural cell adhesion molecule L1 has recently been shown to be expressed in pancreatic adenocarcinoma (PDAC) cells. In this report, we demonstrate that L1 is expressed by moderately- to poorly-differentiated PDAC cells in situ, and that L1 expression is a predictor of poor patient survival. In vitro, reduced reactivity of an anti-L1 carboxy-terminus-specific antibody was observed in the more poorly differentiated fast-growing (FG) variant of the COLO357 population, versus its well-differentiated slow-growing (SG) counterpart, even though they express equivalent total L1. The carboxy-terminus of L1 mediates binding to the MAP kinase-regulating protein RanBPM and mutation of T1247/S1248 within this region attenuates the expression of malignancy associated proteins and L1-induced tumorigenicity in mice. Therefore, we reasoned that the differential epitope exposure observed might be indicative of modifications responsible for regulating these events. However, epitope mapping demonstrated that the major determinant of binding was actually N1251; mutation of T1247 and S1248, alone or together, had little effect on C20 binding. Moreover, cluster assays using CD25 ectodomain/L1 cytoplasmic domain chimeras demonstrated the N1251-dependent, RanBPM-independent stimulation of erk phosphorylation in these cells. Reactivity of this antibody also reflects the differential exposure of extracellular epitopes in these COLO357 sublines, consistent with the previous demonstration of L1 ectodomain conformation modulation by intracellular modifications. These data further support a central role for L1 in PDAC, and define a specific role for carboxy-terminal residues including N1251 in the regulation of L1 activity in PDAC cells

    A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tissue factor (TF)-dependent extrinsic pathway has been suggested to be a central mechanism by which the coagulation cascade is locally activated in the lungs of patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS) and thus represents an attractive target for therapeutic intervention. This study was designed to determine the pharmacokinetic and safety profiles of ALT-836, an anti-TF antibody, in patients with ALI/ARDS.</p> <p>Methods</p> <p>This was a prospective, randomized, placebo-controlled, dose-escalation Phase I clinical trial in adult patients who had suspected or proven infection, were receiving mechanical ventilation and had ALI/ARDS (PaO<sub>2</sub>/FiO<sub>2 </sub>≤ 300 mm). Eighteen patients (6 per cohort) were randomized in a 5:1 ratio to receive ALT-836 or placebo, and were treated within 48 hours after meeting screening criteria. Cohorts of patients were administered a single intravenously dose of 0.06, 0.08 or 0.1 mg/kg ALT-836 or placebo. Blood samples were taken for pharmacokinetic and immunogenicity measurements. Safety was assessed by adverse events, vital signs, ECGs, laboratory, coagulation and pulmonary function parameters.</p> <p>Results</p> <p>Pharmacokinetic analysis showed a dose dependent exposure to ALT-836 across the infusion range of 0.06 to 0.1 mg/kg. No anti-ALT-836 antibody response was observed in the study population during the trial. No major bleeding episodes were reported in the ALT-836 treated patients. The most frequent adverse events were anemia, observed in both placebo and ALT-836 treated patients, and ALT-836 dose dependent, self-resolved hematuria, which suggested 0.08 mg/kg as an acceptable dose level of ALT-836 in this patient population.</p> <p>Conclusions</p> <p>Overall, this study showed that ALT-836 could be safely administered to patients with sepsis-induced ALI/ARDS.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01438853">NCT01438853</a></p

    The activation of Proteinase-Activated Receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to regulating platelet function, the G protein-coupled sub-family member Proteinase-activated receptor-1 (PAR1) has a proposed role in the development of various cancers, but its exact role and mechanism of action in the invasion, metastasis, and proliferation process in gastric cancer have yet to be completely elucidated. Here, we analyzed the relationship between PAR1 activation, proliferation, invasion, and the signaling pathways downstream of PAR1 activation in gastric cancer.</p> <p>Methods</p> <p>We established a PAR1 stably transfected MKN45 human gastric cancer cell line (MKN45/PAR1) and performed cell proliferation and invasion assays employing this cell line and MKN28 cell line exposed to PAR1 agonists (α-thrombin and TFLLR-NH<sub>2</sub>). We also quantified NF-κB activation by electrophoretic mobility shift assay (EMSA) and the level of Tenascin-C (TN-C) expression in conditioned medium by ELISA of MKN45/PAR1 following administration of α-thrombin. A high molecular weight concentrate was derived from the resultant conditioned medium and subsequent cultures of MKN45/PAR1 and MKN28 were exposed to the resultant concentrate either in the presence or absence of TN-C-neutralizing antibody. Lysates of these subsequent cells were probed to quantify levels of phospholyrated Epidermal Growth Factor Receptor (EGFR).</p> <p>Result</p> <p>PAR1 in both PAR1/MKN45 and MKN28 was activated by PAR1 agonists, resulting in cell proliferation and matrigel invasion. We have shown that activation of NF-κB and EGFR phosphorylation initially were triggered by the activation of PAR1 with α-thrombin. Quantitative PCR and Western blot assay revealed up-regulation of mRNA and protein expression of NF-κB target genes, especially TN-C, a potential EGFR activator. The suppressed level of phosphorylated EGFR, observed in cells exposed to concentrate of conditioned medium in the presence of TN-C-neutralizing antibody, identifies TN-C as a putative autocrine stimulatory factor of EGFR possibly involved in the sustained PAR1 activation responses observed.</p> <p>Conclusion</p> <p>Our data indicate that in gastric carcinoma cells, PAR1 activation can trigger an array of responses that would promote tumor cell growth and invasion. Over expression of NF-κB, EGFR, and TN-C, are among the effects of PAR1 activation and TN-C induces EGFR activation in an autocrine manner. Thus, PAR1 is a potentially important therapeutic target for the treatment of gastric cancer.</p

    Transcultural Diabetes Nutrition Therapy Algorithm: The Asian Indian Application

    Get PDF
    India and other countries in Asia are experiencing rapidly escalating epidemics of type 2 diabetes (T2D) and cardiovascular disease. The dramatic rise in the prevalence of these illnesses has been attributed to rapid changes in demographic, socioeconomic, and nutritional factors. The rapid transition in dietary patterns in India—coupled with a sedentary lifestyle and specific socioeconomic pressures—has led to an increase in obesity and other diet-related noncommunicable diseases. Studies have shown that nutritional interventions significantly enhance metabolic control and weight loss. Current clinical practice guidelines (CPGs) are not portable to diverse cultures, constraining the applicability of this type of practical educational instrument. Therefore, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed and then customized per regional variations in India. The resultant India-specific tDNA reflects differences in epidemiologic, physiologic, and nutritional aspects of disease, anthropometric cutoff points, and lifestyle interventions unique to this region of the world. Specific features of this transculturalization process for India include characteristics of a transitional economy with a persistently high poverty rate in a majority of people; higher percentage of body fat and lower muscle mass for a given body mass index; higher rate of sedentary lifestyle; elements of the thrifty phenotype; impact of festivals and holidays on adherence with clinic appointments; and the role of a systems or holistic approach to the problem that must involve politics, policy, and government. This Asian Indian tDNA promises to help guide physicians in the management of prediabetes and T2D in India in a more structured, systematic, and effective way compared with previous methods and currently available CPGs
    corecore