34 research outputs found

    Plasma apolipoprotein J as a potential biomarker for Alzheimer\u27s disease: Australian Imaging, Biomarkers and Lifestyle study of aging

    Get PDF
    Introduction: For early detection of Alzheimer\u27s disease (AD), the field needs biomarkers that can be used to detect disease status with high sensitivity and specificity. Apolipoprotein J (ApoJ, also known as clusterin) has long been associated with AD pathogenesis through various pathways. The aim of this study was to investigate the potential of plasma apoJ as a blood biomarker for AD. Methods: Using the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, the present study assayed plasma apoJ levels over baseline and 18 months in 833 individuals. Plasma ApoJ levels were analyzed with respect to clinical classification, age, gender, apolipoprotein E (APOE) ε4 allele status, mini-mental state examination score, plasma amyloid beta (Aβ), neocortical Aβ burden (as measured by Pittsburgh compound B-positron emission tomography), and total adjusted hippocampus volume. Results: ApoJ was significantly higher in both mild cognitive impairment (MCI) and AD groups as compared with healthy controls (HC; P \u3c .0001). ApoJ significantly correlated with both standardized uptake value ratio (SUVR) and hippocampus volume and weakly correlated with the plasma Aβ1-42/Aβ1-40 ratio. Plasma apoJ predicted both MCI and AD from HC with greater than 80% accuracy for AD and greater than 75% accuracy for MCI at both baseline and 18-month time points. Discussion: Mean apoJ levels were significantly higher in both MCI and AD groups. ApoJ was able to differentiate between HC with high SUVR and HC with low SUVR via APOE ε4 allele status, indicating that it may be included in a biomarker panel to identify AD before the onset of clinical symptoms. © 2016 The Authors

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    A Reservoir of Drug-Resistant Pathogenic Bacteria in Asymptomatic Hosts

    Get PDF
    The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health

    Evaluation of Cholinergic Deficiency in Preclinical Alzheimer's Disease Using Pupillometry

    Get PDF
    Cortical cholinergic deficiency is prominent in Alzheimer's disease (AD), and published findings of diminished pupil flash response in AD suggest that this deficiency may extend to the visual cortical areas and anterior eye. Pupillometry is a low-cost, noninvasive technique that may be useful for monitoring cholinergic deficits which generally lead to memory and cognitive disorders. The aim of the study was to evaluate pupillometry for early detection of AD by comparing the pupil flash response (PFR) in AD (N = 14) and cognitively normal healthy control (HC, N = 115) participants, with the HC group stratified according to high (N = 38) and low (N = 77) neocortical amyloid burden (NAB). Constriction phase PFR parameters were significantly reduced in AD compared to HC (maximum acceleration p < 0.05, maximum velocity p < 0.0005, average velocity p < 0.005, and constriction amplitude p < 0.00005). The high-NAB HC subgroup had reduced PFR response cross-sectionally, and also a greater decline longitudinally, compared to the low-NAB subgroup, suggesting changes to pupil response in preclinical AD. The results suggest that PFR changes may occur in the preclinical phase of AD. Hence, pupillometry has a potential as an adjunct for noninvasive, cost-effective screening for preclinical AD

    Comparative analysis of the Cancer Council of Victoria and the online Commonwealth Scientific and Industrial Research Organisation FFQ

    No full text
    FFQ are commonly used to examine the association between diet and disease. They are the most practical method for usual dietary data collection as they are relatively inexpensive and easy to administer. In Australia, the Cancer Council of Victoria FFQ (CCVFFQ) version 2 and the online Commonwealth Scientific and Industrial Research Organisation FFQ (CSIROFFQ) are used. The aim of our study was to establish the level of agreement between nutrient intakes captured using the online CSIROFFQ and the paper-based CCVFFQ. The CCVFFQ and the online CSIROFFQ were completed by 136 healthy participants. FFQ responses were analysed to give g per d intake of a range of nutrients. Agreement between twenty-six nutrient intakes common to both FFQ was measured by a variety of methods. Nutrient intake levels that were significantly correlated between the two FFQ were carbohydrates, total fat, Na and MUFA. When assessing ranking of nutrients into quintiles, on average, 56 % of the participants (for all nutrients) were classified into the same or adjacent quintiles in both FFQ, with the highest percentage agreement for sugar. On average, 21 % of participants were grossly misclassified by three or four quintiles, with the highest percentage misclassification for fibre and Fe. Quintile agreement was similar to that reported by other studies, and we concluded that both FFQ are suitable tools for dividing participants' nutrient intake levels into high- and low-consumption groups. Use of either FFQ was not appropriate for obtaining accurate estimates of absolute nutrient intakes

    Elecsys CSF biomarker immunoassays demonstrate concordance with amyloid-PET imaging

    Get PDF
    BACKGROUND: β-amyloid (Aβ) positron emission tomography (PET) imaging is currently the only Food and Drug Administration-approved method to support clinical diagnosis of Alzheimer's disease (AD). However, numerous research studies support the use of cerebrospinal fluid (CSF) biomarkers, as a cost-efficient, quick and equally valid method to define AD pathology. METHODS: Using automated Elecsys® assays (Roche Diagnostics) for Aβ (1-42) (Aβ42), Aβ (1-40) (Aβ40), total tau (tTau) and phosphorylated tau (181P) (pTau), we examined CSF samples from 202 participants of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of ageing cohort, to demonstrate the concordance with pathological AD via PET imaging. RESULTS: Ratios Aβ42/Aβ40, tTau/Aβ42 and pTau/Aβ42 had higher receiver operator characteristic-area under the curve (all 0.94), and greater concordance with Aβ-PET (overall percentage agreement ~ 90%), compared with individual biomarkers. CONCLUSION: Strong concordance between CSF biomarkers and Aβ-PET status was observed overall, including for cognitively normal participants, further strengthening the association between these markers of AD neuropathological burden for both developmental research studies and for use in clinical trials

    A multinational study distinguishing Alzheimer's and healthy patients using cerebrospinal fluid tau/Aβ42 cutoff with concordance to amyloid positron emission tomography imaging.

    Get PDF
    INTRODUCTION: Changes in cerebrospinal fluid (CSF) tau and amyloid β (Aβ)42 accompany development of Alzheimer's brain pathology. Robust tau and Aβ42 immunoassays were developed to establish a tau/Aβ42 cutoff distinguishing mild-to-moderate Alzheimer's disease (AD) subjects from healthy elderly control (HC) subjects. METHODS: A CSF tau/Aβ42 cutoff criteria was chosen, which distinguished the groups and maximized concordance with amyloid PET. Performance was assessed using an independent validation cohort. RESULTS: A tau/Aβ42 = 0.215 cutoff provided 94.8% sensitivity and 77.7% specificity. Concordance with PET visual reads was estimated at 86.9% in a ∼50% PET positive population. In the validation cohort, the cutoff demonstrated 78.4% sensitivity and 84.9% specificity to distinguish the AD and HC populations. DISCUSSION: A tau/Aβ42 cutoff with acceptable sensitivity and specificity distinguished HC from mild-to-moderate AD subjects and maximized concordance to brain amyloidosis. The defined cutoff demonstrated that CSF analysis may be useful as a surrogate to imaging assessment of AD pathology

    Influence of BDNF Val66Met on the relationship between physical activity and brain volume

    No full text
    OBJECTIVE: To investigate the association between habitual physical activity levels and brain temporal lobe volumes, and the interaction with the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. METHODS: This study is a cross-sectional analysis of 114 cognitively healthy men and women aged 60 years and older. Brain volumes quantified by MRI were correlated with self-reported physical activity levels. The effect of the interaction between physical activity and the BDNF Val66Met polymorphism on brain structure volumes was assessed. Post hoc analyses were completed to evaluate the influence of the APOE ε4 allele on any found associations. RESULTS: The BDNF Val66Met polymorphism interacted with physical activity to be associated with hippocampal (β = -0.22, p = 0.02) and temporal lobe (β = -0.28, p = 0.003) volumes. In Val/Val homozygotes, higher levels of physical activity were associated with larger hippocampal and temporal lobe volumes, whereas in Met carriers, higher levels of physical activity were associated with smaller temporal lobe volume. CONCLUSION: The findings from this study support higher physical activity levels in the potential attenuation of age- and disease-related hippocampal and temporal lobe volume loss in Val/Val homozygotes
    corecore