5 research outputs found

    O6-methylguanine-DNA-methyltransferase expression and gene polymorphisms in relation to chemotherapeutic response in metastatic melanoma

    Get PDF
    In a retrospective study, O6-methylguanine-DNA-methyltransferase (MGMT) expression was analysed by immunohistochemistry using monoclonal human anti-MGMT antibody in melanoma metastases in patients receiving dacarbazine (DTIC) as single-drug therapy or as part of combination chemotherapy with DTIC–vindesine or DTIC–vindesine–cisplatin. The correlation of MGMT expression levels with clinical response to chemotherapy was investigated in 79 patients with metastatic melanoma. There was an inverse relationship between MGMT expression and clinical response to DTIC-based chemotherapy (P=0.05). Polymorphisms in the coding region of the MGMT gene were also investigated in tumours from 52 melanoma patients by PCR/SSCP and nucleotide sequence analyses. Single-nucleotide polymorphisms (SNPs) in exon 3 (L53L and L84F) and in exon 5 (I143V/K178R) were identified. There were no differences in the frequencies of these polymorphisms between these melanoma patients and patients with familial melanoma or healthy Swedish individuals. Functional analysis of variants MGMT-I143V and -I143V/K178R was performed by in vitro mutagenesis in Escherichia coli. There was no evidence that these variants decreased the MGMT DNA repair activity compared to the wild-type protein. All melanoma patients with the MGMT 53/84 polymorphism except one had tumours with high MGMT expression. There was no significant correlation between any of the MGMT polymorphisms and clinical response to chemotherapy, although an indication of a lower response rate in patients with SNPs in exon 5 was obtained. Thus, MGMT expression appears to be more related to response to chemotherapy than MGMT polymorphisms in patients with metastatic melanoma

    Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy

    No full text

    Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation

    No full text
    corecore