19 research outputs found

    Heterogeneity of the humoral immune response following Staphylococcus aureus bacteremia

    Get PDF
    Expanding knowledge on the humoral immune response in Staphylococcus aureus-infected patients is a mandatory step in the development of vaccines and immunotherapies. Here, we present novel insights into the antibody responses following S. aureus bacteremia. Fifteen bacteremic patients were followed extensively from diagnosis onwards (median 29 days, range 9-74). S. aureus strains (median 3, range 1-6) and serial serum samples (median 16, range 6-27) were collected. Strains were genotyped by pulsed-field gel electrophoresis (PFGE) and genes encoding 19 staphylococcal proteins were detected by polymerase chain reaction (PCR). The levels of IgG, IgA, and IgM directed to these proteins were determined using bead-based flow cytometry. All strains isolated from individual patients were PFGE-identical. The genes encoding clumping factor (Clf) A, ClfB, and iron-responsive surface-determinant (Isd) A were detected in all isolates. Antigen-specific IgG levels increased more frequently than IgA or IgM levels. In individual patients, different proteins induced an immune response and the dynamics clearly differed. Anti-ClfB, anti-IsdH, and anti-fibronectin-binding protein A IgG levels increased in 7 of 13 adult patients (p < 0.05). The anti-IsdA IgG level increased in 12 patients (initial to peak level: 1.13-10.72 fold; p < 0.01). Peak level was reached 7-37 days after diagnosis. In a bacteremic 5-day-old newborn, antistaphylococcal IgG levels declined from diagnosis onwards. In conclusion, each bacteremic patient develops a unique immune response directed to different staphylococcal proteins. Therefore, vaccines should be based on multiple components. IsdA is immunogenic and, therefore, produced in nearly all bacteremic patients.

    Staphylococcus aureus Surface Protein SdrE Binds Complement Regulator Factor H as an Immune Evasion Tactic

    Get PDF
    Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH) to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI)-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism

    A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings

    No full text
    Although wings of insects show a large variation in morphology, they are all made from a network of irregular veins interconnected through membranous areas. Depending on their shape, size, and position, wing veins are usually divided into three different groups: longitudinal veins, cross-veins and ambient veins. The veins together with the membrane and some other elements such as spines, nodus and pterostigma can be considered as the wing’s “constructional elements”. In spite of rather extensive literature on dragonfly wing structure, the role of each of these elements in determining the wing’s function remains mostly unknown. As this question is difficult to answer in vivo using biomechanical experiments on actual wings, this study was undertaken to reveal the effects of the constructional elements on the mechanical behaviour of dragonfly wings by applying numerical simulations. An image processing technique was used to develop 12 finite element models of the insect wings with different constructional elements. The mechanical behaviour of these models was then simulated under normal and shear stresses due to tension, bending and torsion. A free vibration analysis was also performed to determine the resonant frequencies and the mode shapes of the models. For the first time, a quantitative comparison was carried out between the mechanical effects selectively caused by different elements. Our results suggest that the complex interactions of veins, membranes and corrugations may considerably affect the dynamic deformation of the insect wings during flight.113122
    corecore