11 research outputs found

    A review of tennis racket performance parameters

    Get PDF
    The application of advanced engineering to tennis racket design has influenced the nature of the sport. As a result, the International Tennis Federation has established rules to limit performance, with the aim of protecting the nature of the game. This paper illustrates how changes to the racket affect the player-racket system. The review integrates engineering and biomechanical issues related to tennis racket performance, covering the biomechanical characteristics of tennis strokes, tennis racket performance, the effect of racket parameters on ball rebound and biomechanical interactions. Racket properties influence the rebound of the ball. Ball rebound speed increases with frame stiffness and as string tension decreases. Reducing inter-string contacting forces increases rebound topspin. Historical trends and predictive modelling indicate swingweights of around 0.030–0.035 kg/m2 are best for high ball speed and accuracy. To fully understand the effect of their design changes, engineers should use impact conditions in their experiments, or models, which reflect those of actual tennis strokes. Sports engineers, therefore, benefit from working closely with biomechanists to ensure realistic impact conditions

    Characterisation of ball degradation events in professional tennis

    Get PDF
    This is an Open Acces Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Tennis balls are acknowledged to degrade with use and are replaced at regular intervals during professional matches to maintain consistency and uniformity in performance, such that the game is not adversely affected. Balls are subject to the international tennis federation’s (ITF) ball approval process, which includes a degradation test to ensure a minimum standard of performance. The aim of this investigation was to establish if the ITF degradation test can assess ball longevity and rate of degradation and determine if there is a need for a new degradation test that is more representative of in-play conditions. Ball tracking data from four different professional events, spanning the three major court surfaces, including both men’s and women’s matches were analysed. The frequency of first serves, second serves, racket impacts and surface impacts were assessed and the corresponding distribution of ball speed and (for surface impacts) impact angle was determined. Comparison of ball impact frequency and conditions between in-play data and the ITF degradation test indicated the development of a new test, more representative of in-play data, would be advantageous in determining ball longevity and rate of degradation with use. Assessment of data from different surfaces highlighted that grass court subjected the ball to fewer racket and surface impacts than hard court or clay. In turn, this appears to influence the distribution of ball speed on impact with the surface or racket, suggesting a surface-specific degradation test may be beneficial. As a result of these findings a new test protocol has been proposed, utilising the in-play data, to define the frequency of impacts and impact conditions to equate to nine games of professional tennis across the different surfaces

    Single view silhouette fitting techniques for estimating tennis racket position

    Get PDF
    Stereo camera systems have been used to track markers attached to a racket, allowing its position to be obtained in three-dimensional (3D) space. Typically, markers are manually selected on the image plane, but this can be time-consuming. A markerless system based on one stationary camera estimating 3D racket position data is desirable for research and play. The markerless method presented in this paper relies on a set of racket silhouette views in a common reference frame captured with a calibrated camera and a silhouette of a racket captured with a camera whose relative pose is outside the common reference frame. The aim of this paper is to provide validation of these single view fitting techniques to estimate the pose of a tennis racket. This includes the development of a calibration method to provide the relative pose of a stationary camera with respect to a racket. Mean static racket position was reconstructed to within ±2 mm. Computer generated camera poses and silhouette views of a full size racket model were used to demonstrate the potential of the method to estimate 3D racket position during a simplified serve scenario. From a camera distance of 14 m, 3D racket position was estimated providing a spatial accuracy of 1.9 ± 0.14 mm, similar to recent 3D video marker tracking studies of tennis
    corecore