35 research outputs found

    Burkitt lymphoma masquerading as cardiac tamponade

    Get PDF
    A 61 year old man presented with diffuse large B cell lymphoma of the skin of the back of the shoulder which was excised and treated with chemotherapy (CHOP regime) in 1998. He was in complete remission till he presented in 2002 with extranodal marginal zone lymphoma of the parotid gland for which he underwent superficial parotidectomy and radiotherapy. He continued in remission till 2006 when he presented with recurrent pericardial effusion and tamponade. At median sternotomy, pericardial effusion was drained, an anterior pericardiectomy was done and a left posterior pericardial window made, and an enlarged hard paraaortic lymph node excised. Histology, immunocytochemistry and chromosome analysis revealed Burkitt lymphoma. Patient underwent chemotherapy with CODOX-M regime and continues in remission. This report is unusual on account of the highly atypical presentation of Burkitt lymphoma as cardiac tamponade, only a few cases having been reported previously, the occurrence of three lymphomas of different pathological and genomic profiles in one patient over a period of eight years and the relatively slow rate of growth of an otherwise fulminant tumour with high tumour doubling time. A review of literature with special emphasis on chromosomal diagnosis, transformation of other lymphomas into Burkitt lymphoma and mediastinal and cardiac involvement with Burkitt lymphoma is presented

    Where Are All the Mycobacterium avium Subspecies paratuberculosis in Patients with Crohn's Disease?

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic granulomatous inflammation of the intestines, Johne's disease, in dairy cows and every other species of mammal in which it has been identified. MAP has been identified in the mucosal layer and deeper bowel wall in patients with Crohn's disease by methods other than light microscopy, and by direct visualization in small numbers by light microscopy. MAP has not been accepted as the cause of Crohn's disease in part because it has not been seen under the microscope in large numbers in the intestines of patients with Crohn's disease. An analysis of the literature on the pathology of Crohn's disease and on possible MAP infection in Crohn's patients suggests that MAP might directly infect endothelial cells and adipocytes and cause them to proliferate, causing focal obstruction within already existing vessels (including granuloma formation), the development of new vessels (neoangiogenesis and lymphangiogenesis), and the “creeping fat” of the mesentery that is unique in human pathology to Crohn's disease but also occurs in bovine Johne's disease. Large numbers of MAP might therefore be found in the mesentery attached to segments of intestine affected by Crohn's disease rather than in the bowel wall, the blood and lymphatic vessels running through the mesentery, or the mesenteric fat itself. The walls of fistulas might result from the neoangiogenesis or lymphangiogenesis that occurs in the bowel wall in Crohn's disease and therefore are also possible sites of large numbers of MAP. The direct visualization of large numbers of MAP organisms in the tissues of patients with Crohn's disease will help establish that MAP causes Crohn's disease

    Prolactin induces adrenal hypertrophy

    No full text
    Although adrenocorticotropic hormone is generally considered to play a major role in the regulation of adrenal glucocorticoid secretion, several reports have suggested that other pituitary hormones (e.g., prolactin) also play a significant role in the regulation of adrenal function. The aim of the present study was to measure the adrenocortical cell area and to determine the effects of the transition from the prepubertal to the postpubertal period on the hyperprolactinemic state induced by domperidone (4.0 mg kg-1 day-1, sc). In hyperprolactinemic adult and young rats, the adrenals were heavier, as determined at necropsy, than in the respective controls: adults (30 days: 0.16 ± 0.008 and 0.11 ± 0.007; 46 days: 0.17 ± 0.006 and 0.12 ± 0.008, and 61 days: 0.17 ± 0.008 and 0.10 ± 0.004 mg for treated and control animals, respectively; P < 0.05), and young rats (30 days: 0.19 ± 0.003 and 0.16 ± 0.007, and 60 days: 0.16 ± 0.006 and 0.13 ± 0.009 mg; P < 0.05). We selected randomly a circular area in which we counted the nuclei of adrenocortical cells. The area of zona fasciculata cells was increased in hyperprolactinemic adult and young rats compared to controls: adults: (61 days: 524.90 ± 47.85 and 244.84 ± 9.03 µm² for treated and control animals, respectively; P < 0.05), and young rats: (15 days: 462.30 ± 16.24 and 414.28 ± 18.19; 60 days: 640.51 ± 12.91 and 480.24 ± 22.79 µm²; P < 0.05). Based on these data we conclude that the increase in adrenal weight observed in the hyperprolactinemic animals may be due to prolactin-induced adrenocortical cell hypertrophy
    corecore