18 research outputs found
Diverse basis of β-catenin activation in human hepatocellular carcinoma: Implications in biology and prognosis
Aim: β-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ϵ (CK1ϵ) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC. Methods: Gene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues. Results: Sixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001). Conclusion: This study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism
A phase III placebo-controlled study in advanced head and neck cancer using intratumoural cisplatin/epinephrine gel
Patients with recurrent or refractory head and neck squamous cell carcinoma received cisplatin/epinephrine injectable gel or placebo gel injected directly into the clinically dominant tumour. The double-blind phase III trial comprised of up to 6 weekly treatments over 8 weeks, 4 weekly evaluation visits, and then monthly follow-up; open-label dosing began as needed after three blinded treatments. Tumour response was defined as complete (100% regression) or partial (50–99% regression) sustained for ⩾28 day, and patient benefit as attainment of palliative or preventive goals prospectively selected by investigators and patients. With cisplatin/epinephrine gel, 25% (14 out of 57) of tumours responded (16% complete regression, 9% partial regression), vs 3% (one out of 35, complete regression) with placebo (P=0.007). Patient benefit was positively associated with target tumour response in the blinded period among cisplatin/epinephrine gel recipients (P=0.024): 43% (six out of 14) of responders benefited, vs 12% (five out of 43) of non-responders. The most frequent adverse event was pain during injection and the next most frequent was local cytotoxic effects consistent with the gel's mode of action. Systemic adverse events typical of intravenous cisplatin were uncommon. Intratumoural therapy with cisplatin/epinephrine gel provided safe, well-tolerated, effective palliative treatment for patients with locally advanced head and neck squamous cell carcinoma, who lack other satisfactory treatment options
Cyr61/CCN1 Is Regulated by Wnt/β-Catenin Signaling and Plays an Important Role in the Progression of Hepatocellular Carcinoma
Abnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear β-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis. In this study, we investigated the relationship between Cyr61 and β-catenin in HCC. We found that while Cyr61 protein was not expressed at a detectable level in the liver tissue of healthy individuals, its expression level was elevated in the HCC and HCC adjacent tissues and was markedly increased in cancer-adjacent hepatic cirrhosis tissue. Over-expression of Cyr61 was positively correlated with increased levels of β-catenin in human HCC samples. Activation of β-catenin signaling elevated the mRNA level of Cyr61 in HepG2 cells, while inhibition of β-catenin signaling reduced both mRNA and protein levels of Cyr61. We identified two TCF4-binding elements in the promoter region of human Cyr61 gene and demonstrated that β-catenin/TCF4 complex specifically bound to the Cyr61 promoter in vivo and directly regulated its promoter activity. Furthermore, we found that over-expression of Cyr61 in HepG2 cells promoted the progression of HCC xenografts in SCID mice. These findings indicate that Cyr61 is a direct target of β-catenin signaling in HCC and may play an important role in the progression of HCC
