223 research outputs found

    About maximally localized states in quantum mechanics

    Get PDF
    We analyze the emergence of a minimal length for a large class of generalized commutation relations, preserving commutation of the position operators and translation invariance as well as rotation invariance (in dimension higher than one). We show that the construction of the maximally localized states based on squeezed states generally fails. Rather, one must resort to a constrained variational principle.Comment: accepted for publication in PR

    An acoustic navigation system

    Get PDF
    This report describes a system for underwater acoustic navigation developed, and in use, at the Woods Hole Oceanographic Institution. It includes a brief discussion of the electronic components, operation, mathematical analysis, and available computer programs. There is a series of supplementary Technical Memoranda containing more information on various aspects of the system. We believe that this kind of documentation is more flexible and better meets the needs of potential users than including all technical details in one large volume. These are not final or definitive reports; acoustic navigation capabilities will continue to evolve at W.H.O.I. for some time. Acoustic navigation provides a method of tracking a ship, and an underwater vehicle or instrument package (‘fish’), in the deep ocean. Acoustic devices attached to the ship and fish measure the length of time it takes a sound pulse to travel to acoustic transponders moored on the ocean floor. If the transponder positions and the average speed of sound are known, the ship or fish position can be found.Prepared for the Office of Naval Research under Contracts N00014-71-C0284; NR 293-008 N00014-70-C0205; NR 263-103 and the National Science Foundation/International Decade of Ocean Exploration Grant GX-36024 and the Applied Physics Laboratory of The Johns Hopkins University Contract 372111

    Mimimal Length Uncertainty Principle and the Transplanckian Problem of Black Hole Physics

    Get PDF
    The minimal length uncertainty principle of Kempf, Mangano and Mann (KMM), as derived from a mutilated quantum commutator between coordinate and momentum, is applied to describe the modes and wave packets of Hawking particles evaporated from a black hole. The transplanckian problem is successfully confronted in that the Hawking particle no longer hugs the horizon at arbitrarily close distances. Rather the mode of Schwarzschild frequency ω\omega deviates from the conventional trajectory when the coordinate rr is given by ∣r−2M∣≃ÎČHω/2π| r - 2M|\simeq \beta_H \omega / 2 \pi in units of the non local distance legislated into the uncertainty relation. Wave packets straddle the horizon and spread out to fill the whole non local region. The charge carried by the packet (in the sense of the amount of "stuff" carried by the Klein--Gordon field) is not conserved in the non--local region and rapidly decreases to zero as time decreases. Read in the forward temporal direction, the non--local region thus is the seat of production of the Hawking particle and its partner. The KMM model was inspired by string theory for which the mutilated commutator has been proposed to describe an effective theory of high momentum scattering of zero mass modes. It is here interpreted in terms of dissipation which gives rise to the Hawking particle into a reservoir of other modes (of as yet unknown origin). On this basis it is conjectured that the Bekenstein--Hawking entropy finds its origin in the fluctuations of fields extending over the non local region.Comment: 12 pages (LateX), 1 figur

    Uniqueness of the asymptotic AdS3 geometry

    Get PDF
    We explicitly show that in (2+1) dimensions the general solution of the Einstein equations with negative cosmological constant on a neigbourhood of timelike spatial infinity can be obtained from BTZ metrics by coordinate transformations corresponding geometrically to deformations of their spatial infinity surface. Thus, whatever the topology and geometry of the bulk, the metric on the timelike extremities is BTZ.Comment: LaTeX, 8 pages, no figures, version that will appear in Class. Quant. Gra

    Overview of results from the Asian Seas International Acoustics Experiment in the East China Sea

    Get PDF
    Author Posting. © IEEE, 2004. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 29 (2004): 920-928, doi:10.1109/JOE.2005.843159.The Asian Seas International Acoustics Experiment (ASIAEX) included two major field programs, one in the South China Sea and the other in the East China Sea (ECS). This paper presents an overview of research results from ASIAEX ECS conducted between May 28 and June 9, 2001. The primary emphasis of the field program was shallow-water acoustic propagation, focused on boundary interaction and geoacoustic inversion. The study area's central point was located at 29/spl deg/ 40.67'N, 126/spl deg/ 49.39'E, which is situated 500 km east of the Chinese coastline off Shanghai. The acoustic and supporting environmental measurements are summarized, along with research results to date, and references to papers addressing specific issues in more detail are given.This work was supported by the U.S. Office of Naval Research under Code 321 OA and by sponsoring agencies within China. Primary guidance and sponsorship for ASIAEX East China Sea came from the U.S. Office of Naval Research and significant financial support was also received from sponsoring agencies within China

    Higher spin AdS_3 holography with extended supersymmetry

    Get PDF
    We propose a holographic duality between a higher spin AdS_3 gravity with so(p) extended supersymmetry and a large N limit of a 2-dimensional Grassmannian-like model with a specific critical level k=N and a non-diagonal modular invariant. As evidence, we show the match of one-loop partition functions. Moreover, we construct symmetry generators of the coset model for low spins which are dual to gauge fields in the supergravity. Further, we discuss a possible relation to superstring theory by noticing an N=3 supersymmetry of critical level model at finite k,N. In particular, we examine BPS states and marginal deformations. Inspired by the supergravity side, we also propose and test another large N CFT dual obtained as a Z_2 automorphism truncation of a similar coset model, but at a non-critical level.Comment: 44 pages, published versio

    Large N=4 Holography

    Full text link
    The class of 2d minimal model CFTs with higher spin AdS3 duals is extended to theories with large N=4 superconformal symmetry. We construct a higher spin theory based on the global D(2,1|alpha) superalgebra, and propose a large N family of cosets as a dual CFT description. We also indicate how a non-abelian version of this Vasiliev higher spin theory might give an alternative description of IIB string theory on an AdS3 x S3 x S3 x S1 background.Comment: 41 pages, LaTe

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex

    Evolution of the Scale Factor with a Variable Cosmological Term

    Get PDF
    Evolution of the scale factor a(t) in Friedmann models (those with zero pressure and a constant cosmological term Lambda) is well understood, and elegantly summarized in the review of Felten and Isaacman [Rev. Mod. Phys. 58, 689 (1986)]. Developments in particle physics and inflationary theory, however, increasingly indicate that Lambda ought to be treated as a dynamical quantity. We revisit the evolution of the scale factor with a variable Lambda-term, and also generalize the treatment to include nonzero pressure. New solutions are obtained and evaluated using a variety of observational criteria. Existing arguments for the inevitability of a big bang (ie., an initial state with a=0) are substantially weakened, and can be evaded in some cases with Lambda_0 (the present value of Lambda) well below current experimental limits.Comment: 29 pages, 12 figures (not included), LaTeX, uses Phys Rev D style files (revtex.cls, revtex.sty, aps.sty, aps10.sty, prabib.sty). To appear in Phys Rev

    Arithmetical Chaos and Quantum Cosmology

    Full text link
    In this note, we present the formalism to start a quantum analysis for the recent billiard representation introduced by Damour, Henneaux and Nicolai in the study of the cosmological singularity. In particular we use the theory of Maass automorphic forms and recent mathematical results about arithmetical dynamical systems. The predictions of the billiard model give precise automorphic properties for the wave function (Maass-Hecke eigenform), the asymptotic number of quantum states (Selberg asymptotics for PSL(2,Z)), the distribution for the level spacing statistics (the Poissonian one) and the absence of scarred states. The most interesting implication of this model is perhaps that the discrete spectrum is fully embedded in the continuous one.Comment: 35 pages, 4 figures. to be published on Classical and Quantum Gravity (scheduled for January 2009
    • 

    corecore