10,639 research outputs found

    Generation of large-scale winds in horizontally anisotropic convection

    Full text link
    We simulate three-dimensional, horizontally periodic Rayleigh-B\'enard convection between free-slip horizontal plates, rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio

    Dynamics of a liquid dielectric attracted by a cylindrical capacitor

    Get PDF
    The dynamics of a liquid dielectric attracted by a vertical cylindrical capacitor is studied. Contrary to what might be expected from the standard calculation of the force exerted by the capacitor, the motion of the dielectric is different depending on whether the charge or the voltage of the capacitor is held constant. The problem turns out to be an unconventional example of dynamics of a system with variable mass, whose velocity can, in certain circumstances, suffer abrupt changes. Under the hypothesis that the voltage remains constant the motion is described in qualitative and quantitative details, and a very brief qualitative discussion is made of the constant charge case.Comment: To appear in European Journal of Physic

    The tachocline revisited

    Full text link
    The solar tachocline is a shear layer located at the base of the solar convection zone. The horizontal shear in the tachocline is likely turbulent, and it is often assumed that this turbulence would be strongly anisotropic as a result of the local stratification. What role this turbulence plays in the tachocline dynamics, however, remains to be determined. In particular, it is not clear whether it would result in a turbulent eddy diffusivity, or anti-diffusivity, or something else entirely. In this paper, we present the first direct numerical simulations of turbulence in horizontal shear flows at low Prandtl number, in an idealized model that ignores rotation and magnetic fields. We find that several regimes exist, depending on the relative importance of the stratification, viscosity and thermal diffusivity. Our results suggest that the tachocline is in the stratified turbulence regime, which has very specific properties controlled by a balance between buoyancy, inertia, and thermal diffusion.Comment: Invited review for the meeting Dynamics of the Sun and Stars: Honoring the Life and Work of Michael J. Thompson (Boulder, Colorado, 24-26 September 2019

    Deeply penetrating banded zonal flows in the solar convection zone

    Full text link
    Helioseismic observations have detected small temporal variations of the rotation rate below the solar surface corresponding to the so-called `torsional oscillations' known from Doppler measurements of the surface. These appear as bands of slower and faster than average rotation moving equatorward. Here we establish, using complementary helioseismic observations over four years from the GONG network and from the MDI instrument on board SOHO, that the banded flows are not merely a near-surface phenomenon: rather they extend downward at least 60 Mm (some 8% of the total solar radius) and thus are evident over a significant fraction of the nearly 200 Mm depth of the solar convection zone.Comment: 4 pages, 4 figures To be published in ApJ Letters (accepted 3/3/2000

    Solar rotation rate and its gradients during cycle 23

    Get PDF
    Available helioseismic data now span almost the entire solar activity cycle 23 making it possible to study solar-cycle related changes of the solar rotation rate in detail. In this paper we study how the solar rotation rate, in particular, the zonal flows change with time. In addition to the zonal flows that show a well known pattern in the solar convection zone, we also study changes in the radial and latitudinal gradients of the rotation rate, particularly in the shear layer that is present in the immediate sub-surface layers of the Sun. In the case of the zonal-flow pattern, we find that the band indicating fast rotating region close to the equator seems to have bifurcated around 2005. Our investigation of the rotation-rate gradients show that the relative variation in the rotation-rate gradients is about 20% or more of their average values, which is much larger than the relative variation in the rotation rate itself. These results can be used to test predictions of various solar dynamo models.Comment: To appear in ApJ. Fig 5 has been corrected in this versio

    The Origin of Solar Activity in the Tachocline

    Full text link
    Solar active regions, produced by the emergence of tubes of strong magnetic field in the photosphere, are restricted to within 35 degrees of the solar equator. The nature of the dynamo processes that create and renew these fields, and are therefore responsible for solar magnetic phenomena, are not well understood. We analyze the magneto-rotational stability of the solar tachocline for general field geometry. This thin region of strong radial and latitudinal differential rotation, between the radiative and convective zones, is unstable at latitudes above 37 degrees, yet is stable closer to the equator. We propose that small-scale magneto-rotational turbulence prevents coherent magnetic dynamo action in the tachocline except in the vicinity of the equator, thus explaining the latitudinal restriction of active regions. Tying the magnetic dynamo to the tachocline elucidates the physical conditions and processes relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ

    Negative Energy Modes and Gravitational Instability of Interpenetrating Fluids

    Get PDF
    We study the longitudinal instabilities of two interpenetrating fluids interacting only through gravity. When one of the constituents is of relatively low density, it is possible to have a band of unstable wave numbers well separated from those involved in the usual Jeans instability. If the initial streaming is large enough, and there is no linear instability, the indefinite sign of the free energy has the possible consequence of explosive interactions between positive and negative energy modes in the nonlinear regime. The effect of dissipation on the negative energy modes is also examined

    Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)

    Get PDF
    Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100): first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s<sup>−1</sup> and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle) at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC) measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1) the error arising due to Mie scattering, and (2) the particle losses, especially for larger droplets depending on the set-up and wind conditions
    • …
    corecore